找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Integral Operators, Factorization and Applications; International Worksh Albrecht B?ttcher,Marinus A. Kaashoek,Frank-Olme S Confer

[復(fù)制鏈接]
樓主: Manipulate
31#
發(fā)表于 2025-3-26 22:49:21 | 只看該作者
On Inversion of Fractional Spherical Potentials by Spherical Hypersingular Operators,A new proof of the inversion formula for spherical Riesz type fractional potentials in the case 0 <.2 is presented and a constructive reduction of the case lRa > 2 to the case 0 < lia < 2 is given.
32#
發(fā)表于 2025-3-27 01:42:21 | 只看該作者
Albrecht B?ttcher,Marinus A. Kaashoek,Frank-Olme S12th IWOTA-Proceedings traditionally published in the OT series.Selected and thoroughly refereed contributions
33#
發(fā)表于 2025-3-27 07:45:29 | 只看該作者
34#
發(fā)表于 2025-3-27 12:24:00 | 只看該作者
35#
發(fā)表于 2025-3-27 16:40:09 | 只看該作者
On the Essential Spectrum of Toeplitz Operators with Semi-Almost Periodic Symbols,esult by Sarason enables us to decide whether the Toeplitz operator.λ) is Fredholm for a given point a in the plane, but the problem of characterizing the set of.λ for which.λ) is not Fredholm is nevertheless intricate. This question is studied in the present paper.
36#
發(fā)表于 2025-3-27 21:05:52 | 只看該作者
Noncanonical Factorizations of Almost Periodic Multivariable Matrix Functions,the associated Toeplitz operators. The last section is devoted to uses of factorization for normalization of bases, an important problem in wavelets and other applications. Conjectures and open problems are stated.
37#
發(fā)表于 2025-3-27 23:45:18 | 只看該作者
38#
發(fā)表于 2025-3-28 03:07:12 | 只看該作者
Invertibility of Functional Operators with Slowly Oscillating Non-Carleman Shifts,only two fixed points 0 and 1. We suppose that log a’ is bounded and continuous on (0, 1) and that a, b, a’ slowly oscillate at 0 and 1. The main difficulty connected with slow oscillation is overcome by using the method of limit operators.
39#
發(fā)表于 2025-3-28 08:11:49 | 只看該作者
40#
發(fā)表于 2025-3-28 12:06:55 | 只看該作者
An Axiomatic Approach to the Limit Operators Method,, we derive necessary and sufficient conditions for these operators to be semi-Fredholm or Fredholm. As another application, we obtain necessary and sufficient conditions for the semi-Fredholmness and Fredholmness of pseudodifferential operators.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴旗县| 晋江市| 固阳县| 湄潭县| 定安县| 南充市| 甘孜| 娄底市| 额敏县| 东乌珠穆沁旗| 调兵山市| 兰考县| 靖西县| 攀枝花市| 扎赉特旗| 栖霞市| 从化市| 沂源县| 漳州市| 辽阳县| 和顺县| 西吉县| 临沧市| 金川县| 通江县| 巩义市| 阜新| 芒康县| 孟州市| 墨玉县| 龙南县| 尼玛县| 津南区| 阳原县| 涟源市| 五华县| 遵义县| 昂仁县| 孝感市| 涟源市| 南阳市|