找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Integral Operators, Factorization and Applications; International Worksh Albrecht B?ttcher,Marinus A. Kaashoek,Frank-Olme S Confer

[復(fù)制鏈接]
樓主: Manipulate
31#
發(fā)表于 2025-3-26 22:49:21 | 只看該作者
On Inversion of Fractional Spherical Potentials by Spherical Hypersingular Operators,A new proof of the inversion formula for spherical Riesz type fractional potentials in the case 0 <.2 is presented and a constructive reduction of the case lRa > 2 to the case 0 < lia < 2 is given.
32#
發(fā)表于 2025-3-27 01:42:21 | 只看該作者
Albrecht B?ttcher,Marinus A. Kaashoek,Frank-Olme S12th IWOTA-Proceedings traditionally published in the OT series.Selected and thoroughly refereed contributions
33#
發(fā)表于 2025-3-27 07:45:29 | 只看該作者
34#
發(fā)表于 2025-3-27 12:24:00 | 只看該作者
35#
發(fā)表于 2025-3-27 16:40:09 | 只看該作者
On the Essential Spectrum of Toeplitz Operators with Semi-Almost Periodic Symbols,esult by Sarason enables us to decide whether the Toeplitz operator.λ) is Fredholm for a given point a in the plane, but the problem of characterizing the set of.λ for which.λ) is not Fredholm is nevertheless intricate. This question is studied in the present paper.
36#
發(fā)表于 2025-3-27 21:05:52 | 只看該作者
Noncanonical Factorizations of Almost Periodic Multivariable Matrix Functions,the associated Toeplitz operators. The last section is devoted to uses of factorization for normalization of bases, an important problem in wavelets and other applications. Conjectures and open problems are stated.
37#
發(fā)表于 2025-3-27 23:45:18 | 只看該作者
38#
發(fā)表于 2025-3-28 03:07:12 | 只看該作者
Invertibility of Functional Operators with Slowly Oscillating Non-Carleman Shifts,only two fixed points 0 and 1. We suppose that log a’ is bounded and continuous on (0, 1) and that a, b, a’ slowly oscillate at 0 and 1. The main difficulty connected with slow oscillation is overcome by using the method of limit operators.
39#
發(fā)表于 2025-3-28 08:11:49 | 只看該作者
40#
發(fā)表于 2025-3-28 12:06:55 | 只看該作者
An Axiomatic Approach to the Limit Operators Method,, we derive necessary and sufficient conditions for these operators to be semi-Fredholm or Fredholm. As another application, we obtain necessary and sufficient conditions for the semi-Fredholmness and Fredholmness of pseudodifferential operators.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浑源县| 眉山市| 铁力市| 蓬莱市| 甘泉县| 安国市| 阳东县| 沁阳市| 青河县| 临湘市| 太保市| 天津市| 饶阳县| 连州市| 农安县| 茌平县| 沅陵县| 隆子县| 车致| 大荔县| 威海市| 麟游县| 黎平县| 康乐县| 清流县| 江门市| 周至县| 临清市| 沙坪坝区| 建阳市| 海安县| 科技| 南岸区| 纳雍县| 左云县| 滦平县| 龙南县| 平泉县| 太湖县| 宜昌市| 栾川县|