找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Simultaneous Triangularization; Heydar Radjavi,Peter Rosenthal Book 2000 Springer Science+Business Media New York 2000 algebra.Banach Spac

[復(fù)制鏈接]
樓主: graphic
11#
發(fā)表于 2025-3-23 11:47:22 | 只看該作者
Semigroups of Nonnegative Matrices,ill also be applied to questions of ordinary reducibility. A substantial part of the chapter is devoted to extensions to semigroups of the Perron-Frobenius Theorem on the existence of positive eigenvectors for nonnegative matrices and symmetries of their spectra (Corollary 5.2.13 below).
12#
發(fā)表于 2025-3-23 17:31:45 | 只看該作者
Compact Operators and Invariant Subspaces,proofs). We give the definition of compactness of an operator and prove the Fredholm alternative. Hilden’s simple proof of Lomonosov’s Theorem that compact operators have hyperinvariant subspaces is presented.
13#
發(fā)表于 2025-3-23 19:49:18 | 只看該作者
Semigroups of Compact Operators, we can show that the norm closure of R+S contains a finite-rank operator other than zero. This often allows us to reduce the given question to the case of operators on a finite-dimensional space and then to use the results of the first five chapters. One important case, in which finite-rank operato
14#
發(fā)表于 2025-3-23 23:25:34 | 只看該作者
15#
發(fā)表于 2025-3-24 02:29:05 | 只看該作者
16#
發(fā)表于 2025-3-24 09:16:28 | 只看該作者
Semigroups of Compact Operators,se of operators on a finite-dimensional space and then to use the results of the first five chapters. One important case, in which finite-rank operators are conspicuously absent, is treated in the first section of this chapter, where we establish Turovskii’s Theorem that a semigroup of compact quasinilpotent operators is triangularizable.q
17#
發(fā)表于 2025-3-24 13:16:56 | 只看該作者
18#
發(fā)表于 2025-3-24 18:48:08 | 只看該作者
19#
發(fā)表于 2025-3-24 20:33:24 | 只看該作者
20#
發(fā)表于 2025-3-25 02:00:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
库车县| 卫辉市| 北安市| 祁阳县| 霸州市| 鲁山县| 达州市| 西吉县| 民丰县| 星子县| 长汀县| 孟津县| 南安市| 东兴市| 林州市| 赤峰市| 民和| 大英县| 天全县| 正宁县| 扶风县| 宁阳县| 山西省| 葵青区| 芒康县| 茂名市| 偏关县| 宜君县| 娱乐| 青川县| 荆门市| 和田市| 乌兰察布市| 施秉县| 师宗县| 凤阳县| 临邑县| 东源县| 昌乐县| 宕昌县| 齐齐哈尔市|