找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Simulation and Synthesis in Medical Imaging; 6th International Wo David Svoboda,Ninon Burgos,Can Zhao Conference proceedings 2021 Springer

[復(fù)制鏈接]
查看: 15856|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:53:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Simulation and Synthesis in Medical Imaging
副標(biāo)題6th International Wo
編輯David Svoboda,Ninon Burgos,Can Zhao
視頻videohttp://file.papertrans.cn/868/867583/867583.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Simulation and Synthesis in Medical Imaging; 6th International Wo David Svoboda,Ninon Burgos,Can Zhao Conference proceedings 2021 Springer
描述This book constitutes the refereed proceedings of the 6th International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.*.The 14 full papers presented were carefully reviewed and selected from 18 submissions. The contributions span the following broad categories in alignment with the initial call-for-papers: methods based on generative models or adversarial learning for MRI/CT/ microscopy image synthesis, and several applications of image synthesis and simulation for data augmentation, image enhancement, or segmentation...*The workshop was held virtually..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; bioinformatics; color image processing; color images; computer vision; digital i
版次1
doihttps://doi.org/10.1007/978-3-030-87592-3
isbn_softcover978-3-030-87591-6
isbn_ebook978-3-030-87592-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Simulation and Synthesis in Medical Imaging影響因子(影響力)




書目名稱Simulation and Synthesis in Medical Imaging影響因子(影響力)學(xué)科排名




書目名稱Simulation and Synthesis in Medical Imaging網(wǎng)絡(luò)公開度




書目名稱Simulation and Synthesis in Medical Imaging網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Simulation and Synthesis in Medical Imaging被引頻次




書目名稱Simulation and Synthesis in Medical Imaging被引頻次學(xué)科排名




書目名稱Simulation and Synthesis in Medical Imaging年度引用




書目名稱Simulation and Synthesis in Medical Imaging年度引用學(xué)科排名




書目名稱Simulation and Synthesis in Medical Imaging讀者反饋




書目名稱Simulation and Synthesis in Medical Imaging讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:12:43 | 只看該作者
Joint Image and Label Self-super-Resolutiontput. We evaluated our method with 50 .-weighted brain MR images . down-sampled with 10 automatically generated labels. In comparison to other methods, our method had superior Dice across all labels and competitive metrics on the MR image. Our approach is the first reported method for SSR of paired anisotropic image and label volumes.
板凳
發(fā)表于 2025-3-22 03:06:14 | 只看該作者
地板
發(fā)表于 2025-3-22 07:59:59 | 只看該作者
5#
發(fā)表于 2025-3-22 08:55:47 | 只看該作者
Cine-MRI Simulation to Evaluate Tumor Tracking parameters and adding noise. The simulator generates a total of 84 Cine-MRI sequences, thus having 12 videos per patient. We validate the simulated versus the real Cine-MRI in terms of tumor motion. Finally, we used the simulator to evaluate the performance of real-time tumor tracking algorithms with this dataset.
6#
發(fā)表于 2025-3-22 16:27:36 | 只看該作者
Detail Matters: High-Frequency Content for Realistic Synthetic MRI Generation is the scarcity of quality-labelled samples needed for their training. The lack of labelled training data is often addressed by augmentation methods, which aim to synthesise realistic samples with corresponding labels. While the synthesis of realistic samples remains a challenging task, little is k
7#
發(fā)表于 2025-3-22 19:07:33 | 只看該作者
8#
發(fā)表于 2025-3-22 22:30:04 | 只看該作者
Super-Resolution by Latent Space Exploration: Training with Poorly-Aligned Clinical and Micro CT Ima-resolution (LR) and high-resolution (HR) images for training. For obtaining paired LR and HR images in medical imaging, we need to align low and high-resolution data using image registration technology. However, since the hardness of aligning LR and HR images, the aligned LR-HR dataset is always lo
9#
發(fā)表于 2025-3-23 01:33:51 | 只看該作者
10#
發(fā)表于 2025-3-23 07:52:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南皮县| 霍山县| 阿巴嘎旗| 阿拉善左旗| 寿宁县| 舞钢市| 桐城市| 台中县| 平原县| 阿克| 涟源市| 容城县| 津市市| 呼玛县| 龙山县| 福泉市| 张北县| 长沙县| 元阳县| 阜城县| 泗阳县| 进贤县| 济源市| 永福县| 白玉县| 祁连县| 龙陵县| 西充县| 江北区| 青海省| 封丘县| 崇义县| 丰县| 藁城市| 股票| 忻城县| 济阳县| 定兴县| 崇阳县| 额济纳旗| 东莞市|