找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Siegel Modular Forms; A Classical and Repr Ameya Pitale Book 2019 Springer Nature Switzerland AG 2019 Siegel modular forms.Symplectic group

[復(fù)制鏈接]
樓主: FORGE
11#
發(fā)表于 2025-3-23 11:44:29 | 只看該作者
Applications of Properties of ,-Functions,In this chapter, we present two applications of properties of .-functions of Siegel modular forms. The first one is to determine whether a given modular form is a cusp form based on the size of its Fourier coefficients.
12#
發(fā)表于 2025-3-23 14:56:44 | 只看該作者
Local Representation Theory of ,In this chapter, we will discuss the representation theory of .. The genus 2 case provides a very good introduction to the study of local representations of the symplectic groups. The genus 2 case also has the advantage of detailed tables of data compiled by Roberts and Schmidt.
13#
發(fā)表于 2025-3-23 18:59:00 | 只看該作者
Bessel Models and Applications,Holomorphic Siegel modular forms . correspond to cuspidal automorphic representations . of . that are not globally generic, i.e., they do not have a global Whittaker model.
14#
發(fā)表于 2025-3-24 01:49:28 | 只看該作者
Analytic and Arithmetic Properties of , ,-Functions,In this chapter, we will start from the integral representation for . obtained in the previous chapter. We will use this integral representation to obtain analytic and arithmetic properties of the .-functions. We will also present several applications.
15#
發(fā)表于 2025-3-24 03:25:01 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:18 | 只看該作者
978-3-030-15674-9Springer Nature Switzerland AG 2019
17#
發(fā)表于 2025-3-24 10:45:58 | 只看該作者
18#
發(fā)表于 2025-3-24 16:33:28 | 只看該作者
19#
發(fā)表于 2025-3-24 20:46:10 | 只看該作者
https://doi.org/10.1007/978-3-030-15675-6Siegel modular forms; Symplectic group; Automorphic representations; L-functions; Fourier coefficients; D
20#
發(fā)表于 2025-3-25 00:58:04 | 只看該作者
Examples,ito–Kurokawa lifts. These are concrete examples of cuspidal Siegel modular forms constructed from elliptic cusp forms. Finally, we consider Siegel modular forms with level . in the genus . case, corresponding to the standard congruence subgroups.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大同市| 海伦市| 三台县| 左贡县| 三原县| 门源| 元谋县| 高淳县| 湖口县| 微山县| 镇沅| 凤凰县| 安顺市| 古田县| 岚皋县| 石景山区| 汝阳县| 濮阳县| 东乡县| 犍为县| 通江县| 清涧县| 通化市| 安乡县| 丰县| 辽宁省| 白城市| 汽车| 漳平市| 吉安市| 开原市| 德安县| 文昌市| 宁海县| 古田县| 且末县| 太仆寺旗| 东丰县| 宽城| 金沙县| 南城县|