找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Shape in Medical Imaging; International Worksh Martin Reuter,Christian Wachinger,Islem Rekik Conference proceedings 2020 Springer Nature Sw

[復(fù)制鏈接]
樓主: Fruition
11#
發(fā)表于 2025-3-23 12:49:55 | 只看該作者
12#
發(fā)表于 2025-3-23 15:55:03 | 只看該作者
Uncertainty Reduction in Contour-Based 3D/2D Registration of Bone Surfacesnty of the reconstructions. While traditional optimisation methods produce a single point-estimate, we frame the problem as Bayesian inference. We apply a Monte Carlo sampling based non-rigid 3. to 2. registration recovering the posterior distribution of plausible reconstructions. This provides insi
13#
發(fā)表于 2025-3-23 18:27:41 | 只看該作者
14#
發(fā)表于 2025-3-24 00:56:18 | 只看該作者
Bi-invariant Two-Sample Tests in Lie Groups for Shape Analysiserived measures is that they are compatible with the group structure even for manifolds that do not admit any bi-invariant metric. This property, e.g. assures analysis that does not depend on the reference shape, thus, preventing bias due to arbitrary choices thereof. Furthermore, the generalization
15#
發(fā)表于 2025-3-24 05:01:46 | 只看該作者
Uncertain-DeepSSM: From Images to?Probabilistic Shape Modelsn workflow of anatomy segmentation, shape registration, and the optimization of population-level shape representations. DeepSSM is an end-to-end deep learning approach that extracts statistical shape representation directly from unsegmented images with little manual overhead. It performs comparably
16#
發(fā)表于 2025-3-24 06:49:50 | 只看該作者
D-net: Siamese Based Network for Arbitrarily Oriented Volume Alignmentthe extraction of cartilage shape from contrast-enhanced Computed Tomography (CT) of tibiae requires accurate alignment of the bone, currently performed manually. Existing deep learning-based methods for alignment require a common template or are limited in rotation range. Therefore, we present a no
17#
發(fā)表于 2025-3-24 12:58:11 | 只看該作者
A Method for Semantic Knee Bone and Cartilage Segmentation with Deep 3D Shape Fitting Using Data frontation of relevant areas. Our solution covers the entire pipeline from 2D-based pre-segmentation, a method for fast deep 3D shape regression and subsequent patch-based 3D semantic segmentation for final segmentation. Since we perform landmark regression using a statistical shape model, our method i
18#
發(fā)表于 2025-3-24 18:34:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:16:27 | 只看該作者
Combined Estimation of Shape and Pose for Statistical Analysis of Articulating Jointsoms. For joint comparisons and analysis, the relative positions of the bones can confound subsequent analysis. Clinicians design specific image acquisition protocols to neutralize the individual pose variations. However, recent studies have shown that even specific acquisition protocols fail to achi
20#
發(fā)表于 2025-3-25 02:40:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茂名市| 博爱县| 荆门市| 铜川市| 鸡泽县| 南岸区| 江城| 保定市| 诸城市| 教育| 邯郸县| 克什克腾旗| 远安县| 镶黄旗| 克山县| 海林市| 托克托县| 涿州市| 拉萨市| 铜山县| 靖江市| 桦川县| 台北市| 高雄县| 都江堰市| 孝昌县| 石楼县| 福贡县| 海伦市| 腾冲县| 望城县| 壶关县| 龙川县| 南靖县| 湟中县| 平遥县| 冕宁县| 伽师县| 建德市| 全南县| 汝南县|