找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Set-valued Optimization; An Introduction with Akhtar A. Khan,Christiane Tammer,Constantin Z?line Book 2015 Springer-Verlag Berlin Heidelber

[復(fù)制鏈接]
樓主: morphology
21#
發(fā)表于 2025-3-25 04:31:34 | 只看該作者
Tangent Cones and Tangent Sets,erivatives and epiderivatives of set-valued maps are commonly defined by taking tangent cones and tangent sets of graphs and epigraphs of set-valued maps. Moreover, properties of tangent cones and tangent sets are quite decisive in giving calculus rules for derivatives and epiderivatives of set-valu
22#
發(fā)表于 2025-3-25 10:59:29 | 只看該作者
23#
發(fā)表于 2025-3-25 11:48:25 | 只看該作者
24#
發(fā)表于 2025-3-25 18:38:24 | 只看該作者
Duality,on vector approach, on set approach as well as on lattice approach. For set-valued optimization problems where the solution concept is based on vector approach we present conjugate duality statements. The notions of conjugate maps, subdifferential and a perturbation approach used for deriving these
25#
發(fā)表于 2025-3-25 22:57:24 | 只看該作者
Existence Results for Minimal Points,or spaces for quasiorders generated by convex cones. We continue with the presentation of several types of convex cones and compactness notions with respect to cones. We end the chapter with existence results for vector and set optimization problems.
26#
發(fā)表于 2025-3-26 00:23:29 | 只看該作者
27#
發(fā)表于 2025-3-26 05:52:14 | 只看該作者
28#
發(fā)表于 2025-3-26 10:47:37 | 只看該作者
Sensitivity Analysis in Set-Valued Optimization and Vector Variational Inequalities,al branches of pure and applied mathematics. During the last five decades, substantial progress has been made in sensitivity analysis for optimization problems with scalar objectives. On the other hand, the differentiability issues of the perturbation map for vector optimization problems and set opt
29#
發(fā)表于 2025-3-26 16:26:56 | 只看該作者
30#
發(fā)表于 2025-3-26 18:09:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 01:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清河县| 通州市| 休宁县| 任丘市| 房山区| 陇川县| 商河县| 谢通门县| 巴南区| 宜君县| 剑川县| 沅江市| 张家港市| 泊头市| 庆阳市| 通化县| 东宁县| 军事| 萍乡市| 新疆| 潞西市| 广东省| 赤峰市| 顺平县| 伊通| 五华县| 深水埗区| 太湖县| 旺苍县| 九龙城区| 七台河市| 沅江市| 阿坝县| 观塘区| 正定县| 陆川县| 赫章县| 蚌埠市| 洞头县| 博爱县| 纳雍县|