找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminar on Stochastic Processes, 1984; E. ?inlar,K. L. Chung,R. K. Getoor Book 1986 Birkh?user Boston, Inc. 1986 Markov process.stochastic

[復(fù)制鏈接]
樓主: 代表
11#
發(fā)表于 2025-3-23 11:02:39 | 只看該作者
On the Continuity of the Local Time of Stable Processes,Let X(t) denote a strictly stable process of index α > 1. That is, X(0) = 0, X has stationary independent increments, and
12#
發(fā)表于 2025-3-23 14:55:00 | 只看該作者
Large Deviations in Ergodic Theory,The classical example of a large deviation result is Cramer’s theorem. It tells us, in a contemporary formulation, that if Y., Y.,… is a sequence of independent real valued random variables with identical distribution function F such that. is finite for all finite θ,and if Z. = (Y.) + Y. + … Y./n then. satisfies.and
13#
發(fā)表于 2025-3-23 19:36:52 | 只看該作者
978-1-4684-6747-5Birkh?user Boston, Inc. 1986
14#
發(fā)表于 2025-3-24 01:41:58 | 只看該作者
15#
發(fā)表于 2025-3-24 05:05:09 | 只看該作者
Gauge Theorem for the Neumann Problem,] for bounded q and then in [1] and [4] for q ∈ K. (see below for definition). The gauge function for the Dirichlet problem is defined in [2] as.,where B = {B., t ≥ 0} is the standard Brownian motion on and IR. and τ. is the first exit time of D. One striking property of the gauge function proved in [2] and [4] is the following.
16#
發(fā)表于 2025-3-24 08:56:41 | 只看該作者
17#
發(fā)表于 2025-3-24 14:01:39 | 只看該作者
18#
發(fā)表于 2025-3-24 17:49:31 | 只看該作者
19#
發(fā)表于 2025-3-24 20:59:04 | 只看該作者
https://doi.org/10.1007/978-1-4684-6745-1Markov process; stochastic process; stochastic processes
20#
發(fā)表于 2025-3-25 02:48:40 | 只看該作者
ronomy and instrument design.Tells a previously untold story.This open access book is a biography of Joseph L. Pawsey. It examines not only his life but the birth and growth of the field of radio astronomy and the state of science itself in twentieth century Australia. The book explains how an isola
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 08:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望谟县| 二连浩特市| 南召县| 宜川县| 鄢陵县| 怀柔区| 新野县| 铁岭市| 焦作市| 松原市| 临泉县| 夹江县| 新平| 芜湖市| 永修县| 阜宁县| 黔江区| 萨迦县| 子长县| 北碚区| 黄梅县| 冀州市| 瑞金市| 永仁县| 桃园市| 阜宁县| 宜川县| 永康市| 嘉祥县| 林芝县| 冷水江市| 监利县| 武川县| 屯留县| 庐江县| 呼图壁县| 广安市| 全南县| 东阿县| 麦盖提县| 凤台县|