找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semigroups of Operators -Theory and Applications; B?dlewo, Poland, Oct Jacek Banasiak,Adam Bobrowski,Miros?aw Lachowicz Conference proceedi

[復制鏈接]
樓主: 能干
11#
發(fā)表于 2025-3-23 10:40:24 | 只看該作者
Some Remarks on the Krein-von Neumann Extension of Different LaplaciansWe discuss the Krein-von Neumann extensions of three Laplacian-type operators—on discrete graphs, quantum graphs, and domains. In passing we present a class of one-dimensional elliptic operators such that for any . infinitely many elements of the class have .-dimensional null space.
12#
發(fā)表于 2025-3-23 16:01:12 | 只看該作者
13#
發(fā)表于 2025-3-23 21:58:40 | 只看該作者
Jacek Banasiak,Adam Bobrowski,Miros?aw LachowiczIncludes cutting edge results in semi group theory and up-to-date applications of semigroups.Treats stochastic control in biological problems.Bridges gaps between theory and applications.Includes supp
14#
發(fā)表于 2025-3-23 22:39:19 | 只看該作者
15#
發(fā)表于 2025-3-24 04:09:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:30 | 只看該作者
The Null Volatility Limit of the Chaotic Black-Scholes Equation then shown that, keeping the volatility fixed and positive, the coefficients in the lower order terms in the generalized Black-Scholes equation can be replaced by any real constants, and one still obtains chaotic semigroups. Finally, the heat equation on the real line with arbitrary coefficients in the lower order terms is shown to be chaotic.
17#
發(fā)表于 2025-3-24 10:54:36 | 只看該作者
18#
發(fā)表于 2025-3-24 16:01:46 | 只看該作者
Two Approaches to Infinite Dimensional Extension of Feynman-Kac Theoremhe probability characteristic . with a measurable . is under consideration. The main point of the paper is studying the relationship on the basis of two different approaches—“semigroup approach” and “Ito approach”. Special attention is given to the definition and interpretation of objects in the equations.
19#
發(fā)表于 2025-3-24 20:33:27 | 只看該作者
20#
發(fā)表于 2025-3-25 03:03:13 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
定南县| 方城县| 简阳市| 滨海县| 梨树县| 安吉县| 博兴县| 阜城县| 花莲县| 栾城县| 礼泉县| 卢龙县| 屯门区| 子洲县| 南昌市| 石景山区| 辽阳县| 江川县| 武乡县| 广汉市| 利川市| 盐源县| 教育| 涪陵区| 循化| 葫芦岛市| 新闻| 云林县| 临泉县| 永川市| 鄯善县| 七台河市| 张掖市| 深泽县| 深水埗区| 天水市| 陆丰市| 云南省| 婺源县| 钦州市| 宜都市|