找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semigroups of Operators -Theory and Applications; B?dlewo, Poland, Oct Jacek Banasiak,Adam Bobrowski,Miros?aw Lachowicz Conference proceedi

[復制鏈接]
樓主: 能干
11#
發(fā)表于 2025-3-23 10:40:24 | 只看該作者
Some Remarks on the Krein-von Neumann Extension of Different LaplaciansWe discuss the Krein-von Neumann extensions of three Laplacian-type operators—on discrete graphs, quantum graphs, and domains. In passing we present a class of one-dimensional elliptic operators such that for any . infinitely many elements of the class have .-dimensional null space.
12#
發(fā)表于 2025-3-23 16:01:12 | 只看該作者
13#
發(fā)表于 2025-3-23 21:58:40 | 只看該作者
Jacek Banasiak,Adam Bobrowski,Miros?aw LachowiczIncludes cutting edge results in semi group theory and up-to-date applications of semigroups.Treats stochastic control in biological problems.Bridges gaps between theory and applications.Includes supp
14#
發(fā)表于 2025-3-23 22:39:19 | 只看該作者
15#
發(fā)表于 2025-3-24 04:09:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:30 | 只看該作者
The Null Volatility Limit of the Chaotic Black-Scholes Equation then shown that, keeping the volatility fixed and positive, the coefficients in the lower order terms in the generalized Black-Scholes equation can be replaced by any real constants, and one still obtains chaotic semigroups. Finally, the heat equation on the real line with arbitrary coefficients in the lower order terms is shown to be chaotic.
17#
發(fā)表于 2025-3-24 10:54:36 | 只看該作者
18#
發(fā)表于 2025-3-24 16:01:46 | 只看該作者
Two Approaches to Infinite Dimensional Extension of Feynman-Kac Theoremhe probability characteristic . with a measurable . is under consideration. The main point of the paper is studying the relationship on the basis of two different approaches—“semigroup approach” and “Ito approach”. Special attention is given to the definition and interpretation of objects in the equations.
19#
發(fā)表于 2025-3-24 20:33:27 | 只看該作者
20#
發(fā)表于 2025-3-25 03:03:13 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
垫江县| 瓦房店市| 罗源县| 梁河县| 营山县| 连城县| 陵水| 叶城县| 滁州市| 德昌县| 上虞市| 阳春市| 潼南县| 政和县| 建始县| 陵水| 神池县| 荣成市| 阜阳市| 新沂市| 耒阳市| 祁阳县| 阳西县| 霍山县| 图们市| 缙云县| 通辽市| 苗栗市| 老河口市| 绥滨县| 祥云县| 如皋市| 南宁市| 晋中市| 巫山县| 墨竹工卡县| 清河县| 梁平县| 呈贡县| 安泽县| 常德市|