找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semiconductor Physics; An Introduction Karlheinz Seeger Textbook 19997th edition Springer-Verlag Berlin Heidelberg 1999 electrical engineer

[復(fù)制鏈接]
樓主: 法庭
41#
發(fā)表于 2025-3-28 15:15:07 | 只看該作者
42#
發(fā)表于 2025-3-28 20:58:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:20:01 | 只看該作者
44#
發(fā)表于 2025-3-29 03:09:25 | 只看該作者
45#
發(fā)表于 2025-3-29 09:29:22 | 只看該作者
Semiconductor Statistics,ve seen in Fig. 2.8. A discussion of these levels can be confined to the first Brillouin zone. We saw in the last chapter that due to the crystal periodicity, the electron wave functions, which in one dimension are . exp(i . x), also have to be periodic (.). Hence, from . and . we obtain . or . wher
46#
發(fā)表于 2025-3-29 13:14:42 | 只看該作者
47#
發(fā)表于 2025-3-29 16:28:07 | 只看該作者
Carrier Diffusion Processes,current . = -....., where .. is proportional to the electron mobility due to the Einstein relation (4.10.12). In this chapter we will investigate the diffusion of . carriers in local variations in the type of doping, which is so typical for p-n junctions and bipolar transistors.
48#
發(fā)表于 2025-3-29 21:12:29 | 只看該作者
Scattering Processes in a Spherical One-Valley Model,anomagnetic, thermoelectric, thermomagnetic, etc., effects. We will now treat the important scattering mechanisms and find the energy dependence of τm. For those cases where a power law is found, the magnitude of the exponent . will be determined.
49#
發(fā)表于 2025-3-30 02:38:56 | 只看該作者
50#
發(fā)表于 2025-3-30 05:50:02 | 只看該作者
Carrier Transport in the Warped-Sphere Model,his case are warped spheres which have already been discussed in Sect. 2.4 (Figs. 2.28a–2.28c). In the zincblende lattice typical for III–V compounds, there is no center of inversion, in contrast to the diamond lattice.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 21:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察哈| 塔河县| 康乐县| 临沧市| 克什克腾旗| 满城县| 延川县| 东丽区| 阿克| 曲麻莱县| 明星| 孟州市| 比如县| 神池县| 竹溪县| 新蔡县| 莒南县| 正阳县| 舞阳县| 象州县| 砚山县| 大安市| 彭阳县| 正阳县| 习水县| 信宜市| 赤水市| 五华县| 宁蒗| 威远县| 托克逊县| 攀枝花市| 台东市| 自治县| 通城县| 朔州市| 浑源县| 都昌县| 商河县| 沛县| 阜康市|