找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control; Piermarco Cannarsa,Carlo Sinestrari Textbook 2004 Birkh?user Boston

[復(fù)制鏈接]
樓主: 輕舟
11#
發(fā)表于 2025-3-23 10:29:09 | 只看該作者
1421-1750 of variations and optimal exit time problems for nonlinear control systems. The exposition is essentially self-contained since the book includes all prerequisites from convex analysis, nonsmooth analysis, and viscosity solutions..978-0-8176-4336-2978-0-8176-4413-0Series ISSN 1421-1750 Series E-ISSN 2374-0280
12#
發(fā)表于 2025-3-23 14:13:55 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:16 | 只看該作者
14#
發(fā)表于 2025-3-24 02:08:22 | 只看該作者
Hamilton-Jacobi Equations, in Chapter 1 how the dynamic programming approach leads to the analysis of a Hamilton–Jacobi equation and other examples will be considered in the remainder of the book. However, our point of view in this chapter will be to study Hamilton–Jacobi equations for their intrinsic interest without referring to specific applications.
15#
發(fā)表于 2025-3-24 04:39:23 | 只看該作者
16#
發(fā)表于 2025-3-24 10:25:03 | 只看該作者
1421-1750 imal control problems, by leading experts in the field.A cen.Semiconcavity is a natural generalization of concavity that retains most of the good properties known in convex analysis, but arises in a wider range of applications. This text is the first comprehensive exposition of the theory of semicon
17#
發(fā)表于 2025-3-24 11:54:20 | 只看該作者
Semiconcave Functions,f the definition and some basic examples, while the next chapters deal with generalized differentials and singularities. At this stage we study semiconcave functions without referring to specific applications; later in the book we show how the results obtained here can be applied to Hamilton–Jacobi
18#
發(fā)表于 2025-3-24 17:10:17 | 只看該作者
19#
發(fā)表于 2025-3-24 19:25:13 | 只看該作者
20#
發(fā)表于 2025-3-25 02:16:19 | 只看該作者
Hamilton-Jacobi Equations,her fields of mathematics. Our interest in these equations lies mainly in the connection with calculus of variations and optimal control. We have seen in Chapter 1 how the dynamic programming approach leads to the analysis of a Hamilton–Jacobi equation and other examples will be considered in the re
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
醴陵市| 甘南县| 华池县| 新泰市| 宜宾县| 昌都县| 万全县| 古田县| 资溪县| 澄迈县| 洛南县| 泸水县| 彭阳县| 沧源| 额尔古纳市| 章丘市| 彭泽县| 庄河市| 河东区| 安顺市| 夏津县| 黄浦区| 英超| 理塘县| 泗洪县| 台北县| 萨嘎县| 肥城市| 雷山县| 松原市| 儋州市| 阿鲁科尔沁旗| 聂荣县| 洪泽县| 遂宁市| 乌什县| 江源县| 阿荣旗| 龙江县| 佳木斯市| 上虞市|