找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semi-Infinite Programming and Applications; An International Sym Anthony V. Fiacco,Kenneth O. Kortanek Conference proceedings 1983 Springer

[復(fù)制鏈接]
樓主: Coenzyme
41#
發(fā)表于 2025-3-28 15:53:18 | 只看該作者
An Algorithm for Minimizing Polyhedral Convex Functionsion applied to its proximal transform. A method for resolving degeneracy is sketched as are certain points relating to implementation. Applications have been made to linear programming, both directly and by the use of penalty methods, to ?. and ?. fitting problems, and to the interesting and challen
42#
發(fā)表于 2025-3-28 22:12:42 | 只看該作者
43#
發(fā)表于 2025-3-29 00:32:59 | 只看該作者
44#
發(fā)表于 2025-3-29 06:54:09 | 只看該作者
Semi-Infinite and Fuzzy Set Programming convex fuzzy set program is shown to belong to a class of semi-infinite programs characterized by the fact that only one point exists where the constraint inequality is binding at a non-zero optimum. Solution strategies and examples are given both for the semi-infinite program and the fuzzy set pro
45#
發(fā)表于 2025-3-29 09:10:10 | 只看該作者
Conference proceedings 1983 As the papers in this collection will reconfirm, the theoretical and practical manifestations and applications of this prob- lem formulation are abundant and significant. This volume presents 20 carefully selected papers that were pre- sented at the International Symposium on Semi-Infinite Programm
46#
發(fā)表于 2025-3-29 15:07:02 | 只看該作者
A Saddle Value Characterization of Fan’s Equilibrium PointsLipschitz) continuity of V (?) and using the Fan assumptions we show that V (?) unique zero. In this case one of the separably-infinite programs recovers the Fan equilibrium point, also shown to be part of a saddle point of ratio game, ..
47#
發(fā)表于 2025-3-29 15:44:27 | 只看該作者
48#
發(fā)表于 2025-3-29 20:46:22 | 只看該作者
0075-8442 uld normally not have met at the same professional society meeting. Having these papers appear under one cover is thus something of a new phenomenon and provide978-3-540-12304-0978-3-642-46477-5Series ISSN 0075-8442 Series E-ISSN 2196-9957
49#
發(fā)表于 2025-3-30 02:41:50 | 只看該作者
50#
發(fā)表于 2025-3-30 04:38:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善右旗| 安宁市| 赫章县| 昭通市| 柳州市| 枣庄市| 桑日县| 盐亭县| 丹江口市| 嘉善县| 浦县| 井研县| 洪湖市| 当涂县| 肇庆市| 灵川县| 汾阳市| 武安市| 永安市| 五常市| 和静县| 甘孜| 江口县| 抚州市| 旅游| 隆安县| 专栏| 抚宁县| 珲春市| 札达县| 桐庐县| 永顺县| 富裕县| 清水河县| 扬中市| 麻城市| 平远县| 贞丰县| 汨罗市| 湘乡市| 新丰县|