找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Semi-Infinite Programming and Applications; An International Sym Anthony V. Fiacco,Kenneth O. Kortanek Conference proceedings 1983 Springer

[復(fù)制鏈接]
樓主: Coenzyme
41#
發(fā)表于 2025-3-28 15:53:18 | 只看該作者
An Algorithm for Minimizing Polyhedral Convex Functionsion applied to its proximal transform. A method for resolving degeneracy is sketched as are certain points relating to implementation. Applications have been made to linear programming, both directly and by the use of penalty methods, to ?. and ?. fitting problems, and to the interesting and challen
42#
發(fā)表于 2025-3-28 22:12:42 | 只看該作者
43#
發(fā)表于 2025-3-29 00:32:59 | 只看該作者
44#
發(fā)表于 2025-3-29 06:54:09 | 只看該作者
Semi-Infinite and Fuzzy Set Programming convex fuzzy set program is shown to belong to a class of semi-infinite programs characterized by the fact that only one point exists where the constraint inequality is binding at a non-zero optimum. Solution strategies and examples are given both for the semi-infinite program and the fuzzy set pro
45#
發(fā)表于 2025-3-29 09:10:10 | 只看該作者
Conference proceedings 1983 As the papers in this collection will reconfirm, the theoretical and practical manifestations and applications of this prob- lem formulation are abundant and significant. This volume presents 20 carefully selected papers that were pre- sented at the International Symposium on Semi-Infinite Programm
46#
發(fā)表于 2025-3-29 15:07:02 | 只看該作者
A Saddle Value Characterization of Fan’s Equilibrium PointsLipschitz) continuity of V (?) and using the Fan assumptions we show that V (?) unique zero. In this case one of the separably-infinite programs recovers the Fan equilibrium point, also shown to be part of a saddle point of ratio game, ..
47#
發(fā)表于 2025-3-29 15:44:27 | 只看該作者
48#
發(fā)表于 2025-3-29 20:46:22 | 只看該作者
0075-8442 uld normally not have met at the same professional society meeting. Having these papers appear under one cover is thus something of a new phenomenon and provide978-3-540-12304-0978-3-642-46477-5Series ISSN 0075-8442 Series E-ISSN 2196-9957
49#
發(fā)表于 2025-3-30 02:41:50 | 只看該作者
50#
發(fā)表于 2025-3-30 04:38:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广昌县| 江门市| 辽中县| 新巴尔虎右旗| 辽阳市| 于田县| 梁河县| 广昌县| 淄博市| 临湘市| 城市| 泾阳县| 靖州| 华宁县| 祁东县| 察隅县| 民勤县| 马山县| 萨迦县| 五指山市| 伊金霍洛旗| 沅江市| 古蔺县| 南靖县| 朝阳区| 金沙县| 临颍县| 宁武县| 小金县| 延吉市| 道真| 夏津县| 成安县| 长兴县| 安塞县| 五河县| 九寨沟县| 河北区| 尚志市| 临西县| 长宁区|