找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Semi-Infinite Programming; Recent Advances Miguel á. Goberna,Marco A. López Book 2001 Springer Science+Business Media Dordrecht 2001 algori

[復(fù)制鏈接]
樓主: Callow
41#
發(fā)表于 2025-3-28 15:11:29 | 只看該作者
42#
發(fā)表于 2025-3-28 19:35:07 | 只看該作者
Optimization under Uncertainty and Linear Semi-Infinite Programming: A Surveylly, we have reviewed several set-inclusive constrained models and some fuzzy programming problems in order to see if they can be solved by means of a linear semi-infinite program. Finally, we present some numerical examples obtained by using a primal semi-infinite programming method.
43#
發(fā)表于 2025-3-28 23:21:11 | 只看該作者
44#
發(fā)表于 2025-3-29 06:59:59 | 只看該作者
45#
發(fā)表于 2025-3-29 10:54:48 | 只看該作者
46#
發(fā)表于 2025-3-29 12:20:14 | 只看該作者
47#
發(fā)表于 2025-3-29 16:31:20 | 只看該作者
Book 2001. This book presents the state of theart in SIP in a suggestive way, bringing the powerful SIP tools closeto the potential users in different scientific and technologicalfields. . The volume is divided into four parts. Part I reviews thefirst decade of SIP (1962-1972). Part II analyses convex andgen
48#
發(fā)表于 2025-3-29 21:54:50 | 只看該作者
A Semi-Infinte Optimization Approach to Optimal Spline Trajectory Planning of Mechanical Manipulatormizer whose feasibility is guaranteed by the use of a deterministic interval procedure; i.e., a routine based on concepts of interval analysis. The proposed approach is tested by planning a 10 via points movement for a two link manipulator.
49#
發(fā)表于 2025-3-30 01:33:54 | 只看該作者
50#
發(fā)表于 2025-3-30 07:33:21 | 只看該作者
On Convex Lower Level Problems in Generalized Semi-Infinite OptimizationRückmann and Stein ([23]) for the case of linear lower level problems also hold in the jointly convex case. Moreover we prove that the set of lower level Kuhn-Tucker multipliers corresponding to a local minimizer has to be a singleton when the defining functions are in general position.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
驻马店市| 巴南区| 乳源| 九台市| 宁乡县| 集贤县| 普陀区| 万荣县| 文昌市| 梨树县| 永福县| 社会| 平原县| 阿拉尔市| 肇州县| 灵山县| 庐江县| 儋州市| 临澧县| 万州区| 台东县| 修武县| 临夏县| 玉山县| 湄潭县| 连山| 邢台市| 宣威市| 逊克县| 乌恰县| 仙居县| 佛教| 垣曲县| 七台河市| 阳新县| 枣阳市| 保康县| 满城县| 寻甸| 东兴市| 衡南县|