找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Self-Dual Codes and Invariant Theory; Gabriele Nebe,Eric M. Rains,Neil J.A. Sloane Book 2006 Springer-Verlag Berlin Heidelberg 2006 Code.E

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 13:19:02 | 只看該作者
Further Examples of Self-Dual Codes,This chapter describes some families of self-dual codes that cannot be obtained from representations of quasisimple form rings: codes over Z/mZ (§8.1), then the special cases of codes over Z/4Z (§8.2) and Z/8Z (§8.3), codes over more general Galois rings (§8.4), and codes over F. + F. . with . = 0 (§8.5).
12#
發(fā)表于 2025-3-23 15:15:22 | 只看該作者
13#
發(fā)表于 2025-3-23 18:31:33 | 只看該作者
14#
發(fā)表于 2025-3-24 01:48:56 | 只看該作者
The Main Theorems,d in §5.5. They show that under quite general conditions, the invariant ring of the Clifford-Weil group .(.) associated with a finite representation . of a form ring is spanned by the complete weight enumerators of self-dual isotropic codes of Type . (and arbitrary length).
15#
發(fā)表于 2025-3-24 04:59:43 | 只看該作者
16#
發(fā)表于 2025-3-24 10:16:00 | 只看該作者
17#
發(fā)表于 2025-3-24 10:46:59 | 只看該作者
18#
發(fā)表于 2025-3-24 17:31:45 | 只看該作者
1431-1550 theorem about the weight enumerators of self-dual codes and their connections with invariant theory. In the past 35 years there have been hundreds of papers written about generalizations and applications of this theorem to different types of codes. This self-contained book develops a new theory whi
19#
發(fā)表于 2025-3-24 21:00:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:23:35 | 只看該作者
The Category Quad,and in the proofs of the main theorems in Chapter 5. Another application will be the definition of the Witt group of representations of a form ring (§4.6). This will be used to define the universal Clifford-Weil group associated with a finite form ring (see §5.4).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆安县| 高雄市| 阜南县| 永仁县| 南乐县| 宝坻区| 湖州市| 肇州县| 横山县| 宜州市| 商都县| 青铜峡市| 秀山| 新巴尔虎右旗| 来宾市| 宜阳县| 伽师县| 扎鲁特旗| 上高县| 永春县| 竹溪县| 南靖县| 肃宁县| 陆河县| 依兰县| 瑞丽市| 县级市| 分宜县| 镇康县| 平利县| 青龙| 元江| 六安市| 凤阳县| 招远市| 杭锦旗| 孟村| 泾川县| 土默特左旗| 新竹市| 巴林右旗|