找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements; George D. Manolis,Petia S. Dineva,Frank Wuttke Book 2017 S

[復(fù)制鏈接]
樓主: 惡化
11#
發(fā)表于 2025-3-23 11:02:03 | 只看該作者
Anti-plane Strain Wave Motion in Unbounded Inhomogeneous Mediaased on the theoretical developments given in Part?I. Thus, numerical results are presented based on BIEM implementation of problems of engineering interest. Furthermore, numerical results are given for the heterogeneous, orthotropic half-plane. The BIEM formulation computes the scattered wave field
12#
發(fā)表于 2025-3-23 17:36:36 | 只看該作者
13#
發(fā)表于 2025-3-23 18:20:58 | 只看該作者
14#
發(fā)表于 2025-3-24 01:34:04 | 只看該作者
15#
發(fā)表于 2025-3-24 03:02:31 | 只看該作者
Wave Scattering in a Laterally Inhomogeneous, Cracked Poroelastic Finite Region is that the medium under consideration is a two-phase material, namely a poroelastic continuum. To simplify the representation, we replace the two-phase material by a single-phase one that exhibits viscoelastic behavior, which is a plausible representation for low-frequency vibrations.
16#
發(fā)表于 2025-3-24 08:51:43 | 只看該作者
17#
發(fā)表于 2025-3-24 14:12:08 | 只看該作者
Elastodynamic Problem FormulationThis chapter presents the basic formulation for the elastodynamic field equations and the ensuing BVPs for inhomogeneous 2D domains. Furthermore, this formulation is extended in domains with discrete heterogeneities, which includes cavities, inclusions, and cracks.
18#
發(fā)表于 2025-3-24 15:19:01 | 只看該作者
George D. Manolis,Petia S. Dineva,Frank WuttkeOffers a step-by-step tutorial on the application of boundary integral equation methods in mechanics.Includes a methodology for the numerical modeling of elastic wave propagation problems.Presents tes
19#
發(fā)表于 2025-3-24 19:57:59 | 只看該作者
978-3-319-83238-8Springer International Publishing Switzerland 2017
20#
發(fā)表于 2025-3-25 02:40:20 | 只看該作者
Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements978-3-319-45206-7Series ISSN 0925-0042 Series E-ISSN 2214-7764
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深州市| 临湘市| 古田县| 娄烦县| 三河市| 凌海市| 五常市| 龙南县| 福州市| 新沂市| 壶关县| 莎车县| 昭苏县| 云阳县| 韶关市| 封丘县| 富平县| 新野县| 惠水县| 吐鲁番市| 曲松县| 宜兴市| 汝南县| 八宿县| 原平市| 道孚县| 阜城县| 颍上县| 富平县| 闸北区| 安阳市| 吴桥县| 土默特左旗| 延川县| 武夷山市| 屏山县| 曲沃县| 涡阳县| 仪陇县| 玛沁县| 乌兰察布市|