找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seasonal Adjustment with the X-11 Method; Dominique Ladiray,Beno?t Quenneville Book 2001 Springer Science+Business Media New York 2001 Ana

[復(fù)制鏈接]
查看: 46261|回復(fù): 37
樓主
發(fā)表于 2025-3-21 17:35:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Seasonal Adjustment with the X-11 Method
編輯Dominique Ladiray,Beno?t Quenneville
視頻videohttp://file.papertrans.cn/864/863084/863084.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Statistics
圖書封面Titlebook: Seasonal Adjustment with the X-11 Method;  Dominique Ladiray,Beno?t Quenneville Book 2001 Springer Science+Business Media New York 2001 Ana
描述The authors, Dominique Ladiray and Benoit Quenneville, provide a unique and comprehensive r~view of the X-11 Method of seasonal adjustment. They review the original X-11 Method developed at the US Bureau of the Census in the mid-1960‘s, the X-ll core of the X-ll-ARTMA Method developed at Statistics Canada in the 1970‘s, and the X-11 module in the X- 12-ARTMA Method developed more recently at the Bureau of the Census. The review will prove extremely useful to anyone working in the field of seasonal adjustment who wants to understand the X-11 Method and how it fits into the broader picture of seasonal adjustment. What the authors designate as the X-11 Method was originally desig- nated the X-11 Variant of the Census Method IT Seasonal Adjustment Program. It was the culmination of the pioneering work undertaken at the Bureau of the Census by Julius Shiskin in the 1950‘s. Shiskin introduced the Census Method T Seasonal Adjustment Program in 1954 and soon followed it with the introduction of Method TT in 1957.
出版日期Book 2001
關(guān)鍵詞Analysis; Measure; STATISTICA; Seasonal Adjustment; Time series; X-11 Method; linear regression; modeling
版次1
doihttps://doi.org/10.1007/978-1-4613-0175-2
isbn_softcover978-0-387-95171-3
isbn_ebook978-1-4613-0175-2Series ISSN 0930-0325 Series E-ISSN 2197-7186
issn_series 0930-0325
copyrightSpringer Science+Business Media New York 2001
The information of publication is updating

書目名稱Seasonal Adjustment with the X-11 Method影響因子(影響力)




書目名稱Seasonal Adjustment with the X-11 Method影響因子(影響力)學(xué)科排名




書目名稱Seasonal Adjustment with the X-11 Method網(wǎng)絡(luò)公開度




書目名稱Seasonal Adjustment with the X-11 Method網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Seasonal Adjustment with the X-11 Method被引頻次




書目名稱Seasonal Adjustment with the X-11 Method被引頻次學(xué)科排名




書目名稱Seasonal Adjustment with the X-11 Method年度引用




書目名稱Seasonal Adjustment with the X-11 Method年度引用學(xué)科排名




書目名稱Seasonal Adjustment with the X-11 Method讀者反饋




書目名稱Seasonal Adjustment with the X-11 Method讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:53:20 | 只看該作者
Dominique Ladiray,Benoit Quennevillenikationswissenschaft eine von drei philosophischen und theoretischen Wurzeln bzw. Bezugspunkte des Konzeptes der Integrierten Unternehmenskommunikation darstellen. Vertreter der Integrierten Unternehmenskommunikation und des Integrierten Beziehungsmarketings (siehe Kapitel 4) behaupten, dass s?mtli
板凳
發(fā)表于 2025-3-22 02:26:11 | 只看該作者
Dominique Ladiray,Beno?t Quennevillenikationswissenschaft eine von drei philosophischen und theoretischen Wurzeln bzw. Bezugspunkte des Konzeptes der Integrierten Unternehmenskommunikation darstellen. Vertreter der Integrierten Unternehmenskommunikation und des Integrierten Beziehungsmarketings (siehe Kapitel 4) behaupten, dass s?mtli
地板
發(fā)表于 2025-3-22 07:06:16 | 只看該作者
5#
發(fā)表于 2025-3-22 09:34:40 | 只看該作者
6#
發(fā)表于 2025-3-22 14:47:15 | 只看該作者
https://doi.org/10.1007/978-1-4613-0175-2Analysis; Measure; STATISTICA; Seasonal Adjustment; Time series; X-11 Method; linear regression; modeling
7#
發(fā)表于 2025-3-22 19:24:22 | 只看該作者
Brief History of Seasonal Adjustment,It is common today to decompose an observed time series . into several components, themselves unobserved, according to a model such as: . where .,.,. and . designate, respectively, the ., the ., the . and the . components. This is an old idea, and it is doubtless to astronomy that one should turn to find its origin..
8#
發(fā)表于 2025-3-22 21:25:18 | 只看該作者
9#
發(fā)表于 2025-3-23 04:19:37 | 只看該作者
10#
發(fā)表于 2025-3-23 08:43:15 | 只看該作者
Dominique Ladiray,Beno?t QuennevilleIncludes supplementary material:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河曲县| 大渡口区| 开封县| 宣武区| 旬邑县| 荆州市| 高密市| 江都市| 江达县| 集贤县| 花垣县| 姚安县| 安西县| 安新县| 巴彦县| 丰原市| 荆门市| 化隆| 多伦县| 龙口市| 晋宁县| 唐海县| 南城县| 宝兴县| 千阳县| 奇台县| 锦州市| 营口市| 大同市| 新晃| 武川县| 沛县| 凤阳县| 武义县| 衡南县| 乌兰察布市| 社会| 潼关县| 福州市| 金川县| 巴林右旗|