找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Searching Multimedia Databases by Content; Christos Faloutsos Book 1996 Kluwer Academic Publishers 1996 Access.DBMS.Fourier analysis.Mappi

[復制鏈接]
樓主: digestive-tract
21#
發(fā)表于 2025-3-25 05:30:56 | 只看該作者
22#
發(fā)表于 2025-3-25 09:21:07 | 只看該作者
23#
發(fā)表于 2025-3-25 15:29:10 | 只看該作者
Fourier Analysisevery continuous function can be considered as a sum of sinusoidal functions. For the discrete case, which is the one of interest to us, the n-point Discrete Fourier Transform [OS75] of a signal. is defined to be a sequence . of n complex numbers ., given by . where . is the imaginary unit ..
24#
發(fā)表于 2025-3-25 18:20:11 | 只看該作者
Waveletshe DFT and the DCT transform, it has non-zero amplitudes in all frequencies. Thus, what would take a single number to describe in the time domain, will require several numbers in the frequency domain. The problem is that the DFT has no temporal locality: each of its coefficients provide information
25#
發(fā)表于 2025-3-25 23:47:52 | 只看該作者
26#
發(fā)表于 2025-3-26 03:37:20 | 只看該作者
27#
發(fā)表于 2025-3-26 07:26:41 | 只看該作者
1386-2944 background information for the reader and presenting italong with the intuition and mechanics of the best existing tools ineach area. .The first half of .Searching Multimedia Databases by Content.reviews the most successful database access methods, in increasingcomplexity, reaching up to spatial acc
28#
發(fā)表于 2025-3-26 11:40:02 | 只看該作者
29#
發(fā)表于 2025-3-26 15:53:22 | 只看該作者
30#
發(fā)表于 2025-3-26 18:59:47 | 只看該作者
Waveletsut that instant (but no information about frequencies). The DFT has coefficients that give full information about a given frequency, but it needs all the frequencies to recover the value at a given instant in time. The SWFT is somewhere in between.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沛县| 安顺市| 南通市| 镶黄旗| 昌邑市| 无极县| 宜昌市| 城固县| 伊吾县| 大厂| 湾仔区| 汉源县| 咸宁市| 金塔县| 新巴尔虎右旗| 新竹市| 图木舒克市| 徐汇区| 阿瓦提县| 沈丘县| 定兴县| 本溪市| 平阴县| 天津市| 扶沟县| 阿克| 宁南县| 长乐市| 会东县| 遵化市| 交城县| 简阳市| 三穗县| 北流市| 黄龙县| 贡觉县| 大埔区| 巴里| 温宿县| 梅河口市| 常德市|