找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Schwarz-Pick Type Inequalities; Farit G. Avkhadiev,Karl-Joachim Wirths Book 2009 Birkh?user Basel 2009 Area.Factor.Lemma.Schwarz lemma.ana

[復(fù)制鏈接]
樓主: 佯攻
21#
發(fā)表于 2025-3-25 06:43:43 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:39 | 只看該作者
Basic coefficient inequalities, Goluzin [70], Goodman [73], Hayman [78], Pommerenke [128], and Duren [60]. In this chapter we only mention a few classical results on coefficients which are closely connected with the topic of this book. Also, we give several new facts with short proofs that have until now been presented only in or
23#
發(fā)表于 2025-3-25 13:12:04 | 只看該作者
Punishing factors for special cases,look at (5.1) in the following way. The quotient (λΩ(.))./λп(.) reflects the influence of the positions of the points . and . in Ω and ∏ on the nth derivative .(.), whereas the quantities C.(Ω, п) are factors punishing bad behaviour of Ω or ? at the boundary. This motivates the title of the present
24#
發(fā)表于 2025-3-25 19:51:01 | 只看該作者
Some open problems,ains are involved. From this point of view, it seems natural that the difficulties become nearly insuperable, if one allows the points . ∈ Ω or .) ∈ п, or both to vary, and asks for the maximum. Nevertheless, there exists one problem of this type that has attracted researchers for many years because
25#
發(fā)表于 2025-3-25 22:42:05 | 只看該作者
26#
發(fā)表于 2025-3-26 01:50:38 | 只看該作者
Introduction,ional condition we impose on these functions is the condition that the range .(Ω) is contained in a given domain ∏ ? .. This fact will be denoted by . ∈ .(Ω, п). We shall describe how one may get estimates for the derivatives |. (.)|, . ∈ ?, . ∈ . (Ω, ∏) dependent on the position of . in Ω and .(z.) in п.
27#
發(fā)表于 2025-3-26 04:21:45 | 只看該作者
28#
發(fā)表于 2025-3-26 10:50:55 | 只看該作者
1660-8046 the several analytic methods, readers will find many interes.This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent?results?in geometri
29#
發(fā)表于 2025-3-26 14:57:17 | 只看該作者
30#
發(fā)表于 2025-3-26 18:55:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天峻县| 阿克陶县| 汕尾市| 濉溪县| 威海市| 温州市| 台中县| 莱芜市| 巫溪县| 沙雅县| 台东市| 奇台县| 莫力| 夏河县| 汉源县| 龙游县| 仙居县| 临安市| 门头沟区| 池州市| 法库县| 民和| 汉阴县| 谷城县| 五华县| 深泽县| 来宾市| 绥中县| 南澳县| 栾城县| 汝南县| 曲松县| 西平县| 六盘水市| 桦南县| 察雅县| 顺昌县| 婺源县| 克拉玛依市| 汕头市| 惠州市|