找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: STACS 2007; 24th Annual Symposiu Wolfgang Thomas,Pascal Weil Conference proceedings 2007 Springer-Verlag Berlin Heidelberg 2007 Automat.alg

[復制鏈接]
樓主: Pierce
51#
發(fā)表于 2025-3-30 09:21:11 | 只看該作者
Symmetries and the Complexity of Pure Nash Equilibriumyers is unbounded, is that players cannot (or need not) distinguish between the other players. We define four classes of symmetric games by considering two additional properties: . for all players and the ability to . from the other players. Based on these varying notions of symmetry, we investigate
52#
發(fā)表于 2025-3-30 15:49:10 | 只看該作者
53#
發(fā)表于 2025-3-30 17:45:33 | 只看該作者
54#
發(fā)表于 2025-3-31 00:30:55 | 只看該作者
Compact Forbidden-Set Routingor graphs of tree width ., we give a routing scheme using routing tables of size .(..log..). We introduce m-clique width, generalizing clique width, to show that graphs of m-clique width . also have a routing scheme using size .(..log..) tables.
55#
發(fā)表于 2025-3-31 03:17:48 | 只看該作者
On the Size of the Universal Automaton of a Regular Languagenimal deterministic automaton with respect to the smallest NFA is tightly bounded by the Landau’s function; we show that the size of the universal automaton is in this case an exponential of the Landau’s function.
56#
發(fā)表于 2025-3-31 06:51:33 | 只看該作者
57#
發(fā)表于 2025-3-31 12:19:33 | 只看該作者
58#
發(fā)表于 2025-3-31 16:00:35 | 只看該作者
A First Investigation of Sturmian Treesh .. As for the case of words, Sturmian trees are irrational trees of minimal complexity. We give various examples of Sturmian trees, and we characterize one family of Sturmian trees by means of a structural property of their automata.
59#
發(fā)表于 2025-3-31 21:36:04 | 只看該作者
978-3-540-70917-6Springer-Verlag Berlin Heidelberg 2007
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
孝感市| 织金县| 驻马店市| 江津市| 湘潭市| 延长县| 黄梅县| 台南县| 五家渠市| 房山区| 保德县| 临城县| 池州市| 伊春市| 息烽县| 仙游县| 阿拉善左旗| 印江| 揭阳市| 义马市| 丰宁| 东莞市| 吉林市| 达日县| 赣榆县| 六枝特区| 桃江县| 苏尼特左旗| 枝江市| 长白| 遂川县| 额济纳旗| 石渠县| 东丰县| 嵊州市| 中方县| 台南市| 瑞昌市| 郸城县| 德保县| 尼勒克县|