找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rules and Reasoning; 5th International Jo Sotiris Moschoyiannis,Rafael Pe?aloza,Dumitru Roma Conference proceedings 2021 Springer Nature Sw

[復(fù)制鏈接]
查看: 48477|回復(fù): 63
樓主
發(fā)表于 2025-3-21 16:14:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Rules and Reasoning
副標(biāo)題5th International Jo
編輯Sotiris Moschoyiannis,Rafael Pe?aloza,Dumitru Roma
視頻videohttp://file.papertrans.cn/833/832067/832067.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Rules and Reasoning; 5th International Jo Sotiris Moschoyiannis,Rafael Pe?aloza,Dumitru Roma Conference proceedings 2021 Springer Nature Sw
描述.This book constitutes the proceedings of the International Joint Conference on Rules and Reasoning, RuleML+RR 2021, held in Leuven, Belgium, during September, 2021. This is the 5th conference of a new series, joining the efforts of two existing conference series, namely “RuleML” (International Web Rule Symposium) and “RR” (Web Reasoning and Rule Systems)...The 17 full research papers presented together with 2 short technical communications papers and 2 abstracts of invited papers were carefully reviewed and selected from 39 submissions..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; computer programming; computer science; computer systems; databases; education; e
版次1
doihttps://doi.org/10.1007/978-3-030-91167-6
isbn_softcover978-3-030-91166-9
isbn_ebook978-3-030-91167-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Rules and Reasoning影響因子(影響力)




書目名稱Rules and Reasoning影響因子(影響力)學(xué)科排名




書目名稱Rules and Reasoning網(wǎng)絡(luò)公開度




書目名稱Rules and Reasoning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Rules and Reasoning被引頻次




書目名稱Rules and Reasoning被引頻次學(xué)科排名




書目名稱Rules and Reasoning年度引用




書目名稱Rules and Reasoning年度引用學(xué)科排名




書目名稱Rules and Reasoning讀者反饋




書目名稱Rules and Reasoning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:16:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:33:57 | 只看該作者
Policy-Based Automated Compliance CheckingFor the processing to be compliant, additional attributes, such as the purpose of processing or legal basis, should be verified against an established data processing agreement or policy. In this paper, we propose an automated policy-based compliance checking model and implement it using SHACL. We p
地板
發(fā)表于 2025-3-22 04:38:17 | 只看該作者
Correctness of Automatically Generated Choreography Specificationsrvice-oriented applications and web transactions. Constraint solvers such as Alloy Analyzer can be used for the automated generation and verification of declarative choreography specifications. This presumes a mapping between the declarative specification of business rules in . (SBVR), an OMG standa
5#
發(fā)表于 2025-3-22 11:19:20 | 只看該作者
Conflict-Free Access Rules for Sharing Smart Patient Health Recordsecords, establishing granular access rights to personal patient data. Access rules can establish what should be accessible by whom for how long, and comply with collective regulatory frameworks, such as the European General Data Protection Regulation (GDPR). The challenge is to design and implement
6#
發(fā)表于 2025-3-22 15:07:14 | 只看該作者
Structuring Rule Sets Using Binary Decision Diagramss that directly relate the input features to the target concept and are not able to discover intermediate concepts which might result in a more compact and interpretable theory. An analogous observation can also be made in electronic design automation where the task is to find the minimal representa
7#
發(fā)表于 2025-3-22 18:46:26 | 只看該作者
8#
發(fā)表于 2025-3-22 22:03:18 | 只看該作者
9#
發(fā)表于 2025-3-23 03:00:54 | 只看該作者
Combining Deep Learning and ASP-Based Models for the Semantic Segmentation of Medical Imagesrmation for interventional and diagnostic tasks. Recent advancements in Deep Learning (DL), such as Convolutional Neural Networks (CNNs), have proved to be greatly promising in identifying anatomical and pathological structures, and in extracting meaningful patterns from huge amounts of data. Howeve
10#
發(fā)表于 2025-3-23 08:13:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浙江省| 满城县| 太和县| 循化| 贵定县| 广宗县| 得荣县| 临桂县| 铅山县| 新巴尔虎左旗| 山西省| 厦门市| 伊春市| 西乌珠穆沁旗| 阿荣旗| 乃东县| 泗水县| 凉山| 霍城县| 道孚县| 休宁县| 廉江市| 依兰县| 冕宁县| 交口县| 田东县| 博湖县| 衡东县| 贵定县| 岑溪市| 博兴县| 文昌市| 夏津县| 曲沃县| 榆中县| 隆昌县| 分宜县| 涞水县| 田林县| 策勒县| 田东县|