找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing; 10th International C Dominik ?l?zak,JingTao Yao,Xiaohua Hu Conference proceedi

[復(fù)制鏈接]
樓主: FORAY
51#
發(fā)表于 2025-3-30 11:09:02 | 只看該作者
Prediction Mining – An Approach to Mining Association Rules for Predictione to predict the consequent of the rule. But not all of association rules may be suitable for prediction. In this paper, we investigate the properties of rules for prediction, and develop an approach called . — mining a set of association rules that are useful for prediction. Prediction mining disco
52#
發(fā)表于 2025-3-30 14:54:02 | 只看該作者
A Rough Set Based Model to Rank the Importance of Association Rulesre more useful, interesting and important. We introduce a rough set based process by which a rule importance measure is calculated for association rules to select the most appropriate rules. We use ROSETTA software to generate multiple reducts. Apriori association rule algorithm is then applied to g
53#
發(fā)表于 2025-3-30 19:52:16 | 只看該作者
54#
發(fā)表于 2025-3-30 22:51:36 | 只看該作者
Rough Learning Vector Quantization Case Generation for CBR Classifiersantization (LVQ). If the feature values of the cases are numerical, fuzzy sets are firstly used to discretize the feature spaces. Secondly, a fast rough set-based feature selection method is built to identify the significant features. The representative cases (prototypes) are then generated through
55#
發(fā)表于 2025-3-31 04:33:10 | 只看該作者
ML-CIDIM: Multiple Layers of Multiple Classifier Systems Based on CIDIM this paper we present a method to improve even more the accuracy: ML-CIDIM. This method has been developed by using a multiple classifier system which basic classifier is CIDIM, an algorithm that induces small and accurate decision trees. CIDIM makes a random division of the training set into two s
56#
發(fā)表于 2025-3-31 05:08:36 | 只看該作者
57#
發(fā)表于 2025-3-31 09:11:23 | 只看該作者
58#
發(fā)表于 2025-3-31 13:35:09 | 只看該作者
Reducing the Storage Requirements of 1-v-1 Support Vector Machine Multi-classifiers (one versus one). The 1-v-r approach tends to have higher training time, while 1-v-1 approaches tend to create a large number of binary classifiers that need to be analyzed and stored during the operational phase. This paper describes how rough set theory may help in reducing the storage requiremen
59#
發(fā)表于 2025-3-31 19:05:52 | 只看該作者
60#
發(fā)表于 2025-4-1 00:11:41 | 只看該作者
Towards Human-Level Web Intelligenceand advanced Information Technology (IT) on the next generation of Web-empowered systems, services, and environments. The WI technologies revolutionize the way in which information is gathered, stored, processed, presented, shared, and used by virtualization, globalization, standardization, personalization, and portals.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 03:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳江市| 鲁甸县| 巢湖市| 沧源| 乃东县| 大关县| 谷城县| 宝丰县| 黔西县| 乌拉特前旗| 岚皋县| 和田县| 恩施市| 延吉市| 阿尔山市| 齐齐哈尔市| 湖南省| 页游| 垫江县| 永和县| 深水埗区| 南涧| 德州市| 泽州县| 桂平市| 绥棱县| 溆浦县| 哈巴河县| 夏邑县| 秀山| 元氏县| 石城县| 佛山市| 玉龙| 历史| 嵩明县| 康保县| 翼城县| 香港| 平江县| 和政县|