找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rough Sets and Knowledge Technology; 9th International Co Duoqian Miao,Witold Pedrycz,Ruizhi Wang Conference proceedings 2014 Springer Inte

[復(fù)制鏈接]
樓主: 胃口
31#
發(fā)表于 2025-3-26 23:34:10 | 只看該作者
32#
發(fā)表于 2025-3-27 02:54:52 | 只看該作者
33#
發(fā)表于 2025-3-27 08:17:21 | 只看該作者
An Explicit Sparse Mapping for Nonlinear Dimensionality Reduction-dimensional representation space. Previously, some methods have been proposed to provide explicit mappings for nonlinear dimensionality reduction methods. Nevertheless, a disadvantage of these methods is that the learned mapping functions are combinations of all the original features, thus it is of
34#
發(fā)表于 2025-3-27 13:04:17 | 只看該作者
A Web-Based Learning Support System for Rough Sets environments. The learning subjects of Web-based learning systems are mostly for popular sciences. Little attention has been paid for learning cutting edge subjects and no such systems have been developed for rough sets. This paper presents the design principle, system architectures, and prototype
35#
發(fā)表于 2025-3-27 16:03:41 | 只看該作者
0302-9743 in granular computing, big data to wise decisions, rough set theory, and three-way decisions, uncertainty, and granular computing.978-3-319-11739-3978-3-319-11740-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
36#
發(fā)表于 2025-3-27 19:32:24 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:35 | 只看該作者
Approximate Reduction for the Interval-Valued Decision Table0MW unit in some power plant. Experimental results show that the algorithm proposed in this article can maintain a high classification accuracy with the proper parameters, and the numbers of objects and attributes can both be greatly reduced.
38#
發(fā)表于 2025-3-28 04:57:29 | 只看該作者
39#
發(fā)表于 2025-3-28 06:50:47 | 只看該作者
An Explicit Sparse Mapping for Nonlinear Dimensionality Reductionreduction. By using this framework and the method of locally linear embedding, we derive an explicit sparse nonlinear dimensionality reduction algorithm, which is named sparse neighborhood preserving polynomial embedding. Experimental results on real world classification and clustering problems demonstrate the effectiveness of our approach.
40#
發(fā)表于 2025-3-28 13:02:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 17:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
紫云| 凤冈县| 乐东| 红安县| 锡林郭勒盟| 邵东县| 乾安县| 巢湖市| 大英县| 钟祥市| 虹口区| 绥棱县| 临武县| 京山县| 银川市| 香格里拉县| 西畴县| 衡阳县| 南雄市| 桐梓县| 玉树县| 潍坊市| 静海县| 瑞安市| 黔西| 东城区| 塔城市| 灵武市| 建水县| 文山县| 阳朔县| 玉山县| 阜新市| 通州区| 类乌齐县| 收藏| 石屏县| 三穗县| 垣曲县| 玉环县| 留坝县|