找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rough Sets and Current Trends in Computing; 7th International Co Marcin Szczuka,Marzena Kryszkiewicz,Qinghua Hu Conference proceedings 2010

[復制鏈接]
查看: 15199|回復: 66
樓主
發(fā)表于 2025-3-21 17:56:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Rough Sets and Current Trends in Computing
副標題7th International Co
編輯Marcin Szczuka,Marzena Kryszkiewicz,Qinghua Hu
視頻videohttp://file.papertrans.cn/832/831907/831907.mp4
概述Up-to-date results.Fast track conference proceedings.State-of-the-art report
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Rough Sets and Current Trends in Computing; 7th International Co Marcin Szczuka,Marzena Kryszkiewicz,Qinghua Hu Conference proceedings 2010
出版日期Conference proceedings 2010
關鍵詞algorithms; classification; clustering; complexity; data mining; fuzzy sets; machine learning; rough sets; s
版次1
doihttps://doi.org/10.1007/978-3-642-13529-3
isbn_softcover978-3-642-13528-6
isbn_ebook978-3-642-13529-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

書目名稱Rough Sets and Current Trends in Computing影響因子(影響力)




書目名稱Rough Sets and Current Trends in Computing影響因子(影響力)學科排名




書目名稱Rough Sets and Current Trends in Computing網絡公開度




書目名稱Rough Sets and Current Trends in Computing網絡公開度學科排名




書目名稱Rough Sets and Current Trends in Computing被引頻次




書目名稱Rough Sets and Current Trends in Computing被引頻次學科排名




書目名稱Rough Sets and Current Trends in Computing年度引用




書目名稱Rough Sets and Current Trends in Computing年度引用學科排名




書目名稱Rough Sets and Current Trends in Computing讀者反饋




書目名稱Rough Sets and Current Trends in Computing讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:46:45 | 只看該作者
Adaptive Phoneme Alignment Based on Rough Set Theoryplied by updating the phoneme instances versus the optimization of the accuracy metric. The main advantage of this algorithm is the absence of a training phase allowing for wider speaker adaptability and independency. The current paper focuses on the feasibility of the task as this work is still in early research stage.
板凳
發(fā)表于 2025-3-22 00:41:56 | 只看該作者
地板
發(fā)表于 2025-3-22 04:58:35 | 只看該作者
Monitoring Parkinson’s Disease Patients Employing Biometric Sensors and Rule-Based Data Processingn doctors’ questionnaires is presented. These data constitute the input of several rule-based classifiers. It has been proved that the rough-set-based algorithm can be very suitable for automatic assessment of the PD patient’s stability/worsening state.
5#
發(fā)表于 2025-3-22 12:00:05 | 只看該作者
6#
發(fā)表于 2025-3-22 14:11:19 | 只看該作者
7#
發(fā)表于 2025-3-22 21:08:05 | 只看該作者
8#
發(fā)表于 2025-3-23 00:29:13 | 只看該作者
Vehicle Classification Based on Soft Computing Algorithmssed on vehicle mask only and those based on vehicle images. The latter ones employ Speeded Up Robust Features (SURF) and gradient images convolved with Gabor filters. Vehicle type is recognized with various classifiers: artificial neural network, K-nearest neighbors algorithm, decision tree and random forest.
9#
發(fā)表于 2025-3-23 05:00:57 | 只看該作者
Learning from Imbalanced Data in Presence of Noisy and Borderline Examplesficiently disturbed by these factors, then the focused re-sampling methods – NCR and our SPIDER2 – strongly outperformed the oversampling methods. They were also better for real-life data, where PCA visualizations suggested possible existence of noisy examples and large overlapping ares between classes.
10#
發(fā)表于 2025-3-23 07:06:27 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-25 16:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南和县| 萨迦县| 宁化县| 南汇区| 元江| 河池市| 潞西市| 宜良县| 尉犁县| 武清区| 武功县| 墨脱县| 蕉岭县| 乐安县| 图木舒克市| 桦甸市| 方山县| 建昌县| 枞阳县| 武川县| 常州市| 白山市| 彭州市| 金山区| 绍兴县| 克东县| 锡林郭勒盟| 西充县| 杂多县| 外汇| 齐河县| 临朐县| 樟树市| 安义县| 那坡县| 义马市| 霍州市| 泗水县| 宜丰县| 建湖县| 霸州市|