找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rough Sets; International Joint Rafael Bello,Duoqian Miao,Davide Ciucci Conference proceedings 2020 Springer Nature Switzerland AG 2020 ar

[復(fù)制鏈接]
樓主: chondrocyte
51#
發(fā)表于 2025-3-30 11:39:28 | 只看該作者
On Positive-Correlation-Promoting Reductsuch attributes – called positive-correlation-promoting reducts (PCP reducts in short) – using standard calculations over appropriately modified rough-set-based discernibility matrices. The proposed framework is implemented within the RoughSets R package which is widely used for the data exploration and knowledge discovery purposes.
52#
發(fā)表于 2025-3-30 16:07:49 | 只看該作者
Similarity Based Granules called representatives and it can be useful to apply them in the approximation of an arbitrary set. A new approximation pair can be defined based on the representatives. In this paper, some very important properties are checked for this approximation pair and the system of granules.
53#
發(fā)表于 2025-3-30 20:25:19 | 只看該作者
Modeling Use-Oriented Attribute Importance with the Three-Way Decision Theorylist as well as a set of numerical weights of an attribute set. We then categorize attributes into different groups of importance using qualitative and quantitative analysis results. Finally, a unified model to analyze user-oriented attribute importance is constructed.
54#
發(fā)表于 2025-3-30 20:45:26 | 只看該作者
55#
發(fā)表于 2025-3-31 02:21:45 | 只看該作者
Weighted Generalized Fuzzy Petri Nets and Rough Sets for Knowledge Representation and Reasoningppropriate decisions can be made. Conditional attribute values given by experts are propagated by the net at maximum speed. This is done by properly organizing the net’s work. Our approach is based on rough set theory and weighted generalized fuzzy Petri nets.
56#
發(fā)表于 2025-3-31 05:18:53 | 只看該作者
Rough Sets Meet Statistics - A New View on Rough Set Reasoning About Numerical Data events. We propose a way of choosing the optimal neighborhood size inspired by statistical theory. We also discuss possible directions for future research on the integration of rough sets and statistics.
57#
發(fā)表于 2025-3-31 12:25:48 | 只看該作者
58#
發(fā)表于 2025-3-31 17:08:21 | 只看該作者
59#
發(fā)表于 2025-3-31 18:59:06 | 只看該作者
Rough Forgetting of . of the form ., where . is a set of relations in the language signature used to specify the KB. The result of this operation is a new KB where the relations in . are removed from the KB in a principled manner resulting in a more efficient representation of the KB for different purposes. The for
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大连市| 武功县| 来宾市| 庆阳市| 习水县| 杨浦区| 闸北区| 定日县| 西贡区| 九龙城区| 长沙县| 宁阳县| 江川县| 井研县| 克什克腾旗| 邓州市| 凤庆县| 英德市| 临泉县| 大冶市| 舒城县| 达孜县| 当阳市| 同心县| 阳原县| 汝城县| 新和县| 孝感市| 桂东县| 吉木萨尔县| 大悟县| 长顺县| 三原县| 革吉县| 沙田区| 越西县| 云浮市| 枞阳县| 封丘县| 鸡泽县| 菏泽市|