找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rotation Transforms for Computer Graphics; John Vince Textbook 2011 Springer-Verlag London Limited 2011 Computer graphics/ games.Geometric

[復(fù)制鏈接]
樓主: 遮蔽
21#
發(fā)表于 2025-3-25 05:03:59 | 只看該作者
Bivector Rotors,axes. The three reflections theorem is used to show how geometric algebra creates similar triple constructs to quaternions. It then develops 2D and 3D rotors and shows using practical examples how they work. After showing how to extract a rotor from a bivector triple, the chapter concludes with a su
22#
發(fā)表于 2025-3-25 08:36:52 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:29 | 只看該作者
Matrices,tisymmetric matrices, the characteristic equation, eigenvectors and eigenvalues. The latter are eventually used to extract the axis of rotation from a rotation matrix and the angle of rotation. The chapter concludes with a summary and a list of the matrix operations covered.
24#
發(fā)表于 2025-3-25 19:43:31 | 只看該作者
Textbook 2011al environment. Although the former is a trivial operation, the latter can be a challenging task.?.Rotation Transforms for Computer Graphics. covers a wide range of mathematical techniques used for rotating points and frames of reference in the plane and 3D space. It includes many worked examples an
25#
發(fā)表于 2025-3-25 20:44:24 | 只看該作者
26#
發(fā)表于 2025-3-26 01:03:33 | 只看該作者
http://image.papertrans.cn/r/image/831836.jpg
27#
發(fā)表于 2025-3-26 04:58:59 | 只看該作者
https://doi.org/10.1007/978-0-85729-154-7Computer graphics/ games; Geometric algebra; Matrices; Quaternions; Rotations
28#
發(fā)表于 2025-3-26 11:10:32 | 只看該作者
978-0-85729-153-0Springer-Verlag London Limited 2011
29#
發(fā)表于 2025-3-26 16:37:14 | 只看該作者
Conclusion,This last chapter reviews the book’s objectives.
30#
發(fā)表于 2025-3-26 20:39:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东兰县| 兴文县| 扬中市| 武胜县| 永靖县| 翁牛特旗| 高安市| 嘉善县| 康马县| 武强县| 天等县| 镇原县| 牡丹江市| 丹寨县| 泸西县| 深泽县| 英山县| 焉耆| 嘉义县| 社旗县| 饶河县| 霍林郭勒市| 白山市| 威远县| 南昌市| 自贡市| 鄂伦春自治旗| 长海县| 湘潭县| 中方县| 黔江区| 河曲县| 翼城县| 金寨县| 南宁市| 光泽县| 崇义县| 霸州市| 泽普县| 浦北县| 兴山县|