找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rotation Sets and Complex Dynamics; Saeed Zakeri Book 2018 Springer International Publishing AG, part of Springer Nature 2018 Rotation Set

[復(fù)制鏈接]
查看: 11522|回復(fù): 37
樓主
發(fā)表于 2025-3-21 18:26:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Rotation Sets and Complex Dynamics
編輯Saeed Zakeri
視頻videohttp://file.papertrans.cn/832/831835/831835.mp4
概述Provides the first systematic treatment of rotation sets.The abstract treatment is augmented by concrete examples of applications in polynomial dynamics.The clear and detailed exposition is accompanie
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Rotation Sets and Complex Dynamics;  Saeed Zakeri Book 2018 Springer International Publishing AG, part of Springer Nature 2018 Rotation Set
描述This monograph examines rotation sets under the multiplication by .d. (mod 1) map and their relation to degree d polynomial maps of the complex plane. These sets are higher-degree analogs of the corresponding sets under the angle-doubling map of the circle, which played a key role in Douady and Hubbard‘s work on the quadratic family and the Mandelbrot set. Presenting the first systematic study of rotation sets, treating both rational and irrational cases in a unified fashion, the text includes several new results on their structure, their gap dynamics, maximal and minimal sets, rigidity, and continuous dependence on parameters. This abstract material is supplemented by concrete examples which explain how rotation sets arise in the dynamical plane of complex polynomial maps and how suitable parameter spaces of such polynomials provide a complete catalog of all such sets of a given degree. As a main illustration, the link between rotation sets of degree 3 and one-dimensional families of cubic polynomials with a persistent indifferent fixed point is outlined...The monograph will benefit graduate students as well as researchers in the area of holomorphic dynamics and related fields..
出版日期Book 2018
關(guān)鍵詞Rotation Set; Circle Map; Rotation Number; Rotation Cycle; Complex Dynamics; Julia Set; Mandelbrot Set; Ext
版次1
doihttps://doi.org/10.1007/978-3-319-78810-4
isbn_softcover978-3-319-78809-8
isbn_ebook978-3-319-78810-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書目名稱Rotation Sets and Complex Dynamics影響因子(影響力)




書目名稱Rotation Sets and Complex Dynamics影響因子(影響力)學(xué)科排名




書目名稱Rotation Sets and Complex Dynamics網(wǎng)絡(luò)公開度




書目名稱Rotation Sets and Complex Dynamics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Rotation Sets and Complex Dynamics被引頻次




書目名稱Rotation Sets and Complex Dynamics被引頻次學(xué)科排名




書目名稱Rotation Sets and Complex Dynamics年度引用




書目名稱Rotation Sets and Complex Dynamics年度引用學(xué)科排名




書目名稱Rotation Sets and Complex Dynamics讀者反饋




書目名稱Rotation Sets and Complex Dynamics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:53:39 | 只看該作者
地板
發(fā)表于 2025-3-22 08:02:04 | 只看該作者
5#
發(fā)表于 2025-3-22 08:44:07 | 只看該作者
Saeed Zakerid comprehensive, .Health Professions and Academia. provides undergraduate and graduate students with content to develop as competitive applicants to health-related graduate school and build a foundation from wh978-3-030-94222-9978-3-030-94223-6
6#
發(fā)表于 2025-3-22 15:04:47 | 只看該作者
7#
發(fā)表于 2025-3-22 17:33:31 | 只看該作者
8#
發(fā)表于 2025-3-23 00:18:39 | 只看該作者
Saeed Zakerin trainees in the field of medicine, its curriculum and resources for pre-faculty development can be effectively applied to promote the development of diverse faculty across academic healthcare disciplines such as nursing, medicine, pharmacy, and dentistry. We not only want readers to be Pre-Nursing
9#
發(fā)表于 2025-3-23 04:22:16 | 只看該作者
10#
發(fā)表于 2025-3-23 07:26:34 | 只看該作者
978-3-319-78809-8Springer International Publishing AG, part of Springer Nature 2018
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通河县| 望奎县| 海兴县| 永丰县| 浦县| 鄂伦春自治旗| 长沙市| 贡山| 大丰市| 金溪县| 弥勒县| 榆社县| 呼玛县| 拉孜县| 泽普县| 渭源县| 眉山市| 肇庆市| 垦利县| 邯郸县| 门头沟区| 农安县| 吉水县| 丽江市| 南丹县| 河南省| 双鸭山市| 水富县| 广宗县| 巫溪县| 古田县| 威宁| 吉林市| 平度市| 沙坪坝区| 丰镇市| 云和县| 兴山县| 福安市| 安仁县| 贵州省|