找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Romanticism in Science; Science in Europe, 1 Stefano Poggi,Maurizio Bossi Book 1994 Springer Science+Business Media Dordrecht 1994 19th cen

[復(fù)制鏈接]
樓主: Traction
31#
發(fā)表于 2025-3-27 00:19:04 | 只看該作者
,Geometry and “Metaphysics of Space” in Gauss and Riemann,en as an axiom and formulated in the following terms: “That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles”. (Heath 1956, p. 20)
32#
發(fā)表于 2025-3-27 04:16:49 | 只看該作者
0068-0346 of knowledge was decidedly unitary, but, in the period between1790 and 1840, the special emphasis it placed on observation andresearch led to an unprecedented accumulation of data, accompanied bya rapid growth in scientific specialization. An example of thetensions created by this development is to
33#
發(fā)表于 2025-3-27 05:42:33 | 只看該作者
Stefano Poggisics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
34#
發(fā)表于 2025-3-27 10:32:35 | 只看該作者
William R. Woodward,Reinhardt Pestersics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
35#
發(fā)表于 2025-3-27 16:31:15 | 只看該作者
H. A. M. SneldersExamples include geodesics, harmonic functions, complex analytic mappings between suitable (e.g. Miller) manifolds, the Gauss maps of constant mean curvature surfaces, and harmonic morphisms, these last being maps which preserve Laplace’s equation. The Euler-Lagrange equations for a harmonic map (th
36#
發(fā)表于 2025-3-27 20:44:07 | 只看該作者
37#
發(fā)表于 2025-3-28 01:50:16 | 只看該作者
38#
發(fā)表于 2025-3-28 02:56:16 | 只看該作者
39#
發(fā)表于 2025-3-28 07:31:45 | 只看該作者
Examples include geodesics, harmonic functions, complex analytic mappings between suitable (e.g. Miller) manifolds, the Gauss maps of constant mean curvature surfaces, and harmonic morphisms, these last being maps which preserve Laplace’s equation. The Euler-Lagrange equations for a harmonic map (th
40#
發(fā)表于 2025-3-28 10:59:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇南市| 黄浦区| 龙川县| 宁化县| 宣威市| 尚义县| 镇原县| 长顺县| 顺昌县| 栖霞市| 大新县| 台江县| 陆丰市| 融水| 兴安县| 梓潼县| 德阳市| 福鼎市| 图木舒克市| 兰州市| 垣曲县| 商南县| 来安县| 商城县| 江川县| 靖江市| 安庆市| 达拉特旗| 红桥区| 邵阳县| 长子县| 屏山县| 岫岩| 新田县| 洛川县| 行唐县| 定襄县| 阿鲁科尔沁旗| 青龙| 北辰区| 静海县|