找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robustness in Statistical Forecasting; Yuriy Kharin Book 2013 Springer International Publishing Switzerland 2013 62-02, 62M20, 62M10, 62G3

[復制鏈接]
樓主: 我在爭斗志
21#
發(fā)表于 2025-3-25 03:41:21 | 只看該作者
Robustness of Time Series Forecasting Based on Regression Models, the .-admissible distortion level. Robust forecasting statistics are constructed by using Huber estimators and a specially chosen type of M-estimators for the regression function parameters. A local-median forecasting algorithm is proposed to mitigate the influence of outliers under regression models, and its robustness is evaluated.
22#
發(fā)表于 2025-3-25 07:29:00 | 只看該作者
Optimality and Robustness of ARIMA Forecasting,lgorithms is evaluated under the following distortion types: parametric model specification errors, functional distortions of the innovation process in the mean value, heteroscedasticity, AO and IO outliers, bilinear autoregression distortions.
23#
發(fā)表于 2025-3-25 15:01:45 | 只看該作者
Optimality and Robustness of Vector Autoregression Forecasting Under Missing Values,nd model specification errors. In the case of parametric prior uncertainty, a consistent forecasting statistic and an asymptotic expansion of the corresponding forecast risk are obtained. The chapter is concluded by considering plug-in forecasting under simultaneous influence of outliers and missing values.
24#
發(fā)表于 2025-3-25 18:35:40 | 只看該作者
Performance and Robustness Characteristics in Statistical Forecasting,ructed. Robustness of statistical forecasting techniques is defined in terms of the following robustness characteristics: the guaranteed (upper) risk, the risk instability coefficient, the .-admissible distortion level.
25#
發(fā)表于 2025-3-25 20:34:19 | 只看該作者
Book 2013lems; .- evaluating the robustness for traditional forecasting procedures under distortions; .- obtaining the maximal distortion levels that allow the “safe” use of the traditional forecasting algorithms; .-?creating new robust forecasting procedures to arrive at risks that are less sensitive to definite distortion types. ? ? ? ? ? ? ? ?.
26#
發(fā)表于 2025-3-26 02:48:51 | 只看該作者
A Decision-Theoretic Approach to Forecasting,ior model assumptions made about this process. This chapter describes a general (universal) approach to statistical forecasting based on mathematical decision theory, including a brief discussion of discriminant analysis. The following fundamental notions are introduced: optimal and suboptimal forec
27#
發(fā)表于 2025-3-26 04:19:11 | 只看該作者
Time Series Models of Statistical Forecasting,ary time series models, the ARIMA(., ., .) model, nonlinear models, multivariate time series models (including VARMA(., .) and simultaneous equations models), as well as models of discrete time series with a specific focus on high-order Markov chains.
28#
發(fā)表于 2025-3-26 10:17:28 | 只看該作者
Performance and Robustness Characteristics in Statistical Forecasting,n the most general form and then specialized for point or interval forecasting and different levels of prior uncertainty. The chapter introduces performance characteristics of forecasting statistics based on loss functions and risk functionals. In order to define mathematically rigorous robustness c
29#
發(fā)表于 2025-3-26 15:51:06 | 只看該作者
30#
發(fā)表于 2025-3-26 18:46:45 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 20:31
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鄄城县| 邓州市| 长岛县| 曲周县| 宜昌市| 鄄城县| 永平县| 浦北县| 房山区| 通榆县| 兰西县| 利川市| 确山县| 沁阳市| 页游| 新平| 安仁县| 武夷山市| 济源市| 松原市| 大港区| 武穴市| 仁布县| 和政县| 庆城县| 称多县| 麦盖提县| 太白县| 新蔡县| 离岛区| 金沙县| 海阳市| 高阳县| 鹤山市| 和硕县| 莆田市| 潼南县| 定襄县| 连城县| 青铜峡市| 德化县|