找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust and Fault-Tolerant Control; Neural-Network-Based Krzysztof Patan Book 2019 Springer Nature Switzerland AG 2019 Control System Synthe

[復(fù)制鏈接]
查看: 53008|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:35:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Robust and Fault-Tolerant Control
副標(biāo)題Neural-Network-Based
編輯Krzysztof Patan
視頻videohttp://file.papertrans.cn/832/831378/831378.mp4
概述Equips the reader to solve problems in a wide class of nonlinear systems.Provides opportunities for practice and experience with examples of robust and fault-tolerant control.Allows the reader easy ac
叢書(shū)名稱(chēng)Studies in Systems, Decision and Control
圖書(shū)封面Titlebook: Robust and Fault-Tolerant Control; Neural-Network-Based Krzysztof Patan Book 2019 Springer Nature Switzerland AG 2019 Control System Synthe
描述.Robust and Fault-Tolerant Control.?proposes novel automatic control strategies for nonlinear systems developed by means of artificial neural networks and pays special attention to robust and fault-tolerant approaches. The book discusses robustness and fault tolerance in the context of model predictive control, fault accommodation and reconfiguration, and iterative learning control strategies. Expanding on its theoretical deliberations the monograph includes many case studies demonstrating how the proposed approaches work in practice. The most important features of the book include:.a comprehensive review of neural network architectures with possible applications in system modelling and control;.a concise introduction to robust and fault-tolerant control;.step-by-step presentation of the control approaches proposed;.an abundance of case studies illustrating the important steps in designing robust and fault-tolerant control; and.a large number of figures and tables facilitating the performance analysis of the control approaches described..The material presented in this book will be useful for researchers and engineers who wish to avoid spending excessive time in searching neural-net
出版日期Book 2019
關(guān)鍵詞Control System Synthesis; Artificial Neural Networks; Dynamic Modelling; Fault-tolerant Control Systems
版次1
doihttps://doi.org/10.1007/978-3-030-11869-3
isbn_ebook978-3-030-11869-3Series ISSN 2198-4182 Series E-ISSN 2198-4190
issn_series 2198-4182
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱(chēng)Robust and Fault-Tolerant Control影響因子(影響力)




書(shū)目名稱(chēng)Robust and Fault-Tolerant Control影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Robust and Fault-Tolerant Control網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Robust and Fault-Tolerant Control網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Robust and Fault-Tolerant Control被引頻次




書(shū)目名稱(chēng)Robust and Fault-Tolerant Control被引頻次學(xué)科排名




書(shū)目名稱(chēng)Robust and Fault-Tolerant Control年度引用




書(shū)目名稱(chēng)Robust and Fault-Tolerant Control年度引用學(xué)科排名




書(shū)目名稱(chēng)Robust and Fault-Tolerant Control讀者反饋




書(shū)目名稱(chēng)Robust and Fault-Tolerant Control讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:05:36 | 只看該作者
Iterative Learning Control, system. Additionally, the chapter contains both the stability and convergence analysis of the proposed nonlinear ILC. The portrayed control strategies are tested on the examples of a pneumatic servomechanism and a magnetic suspension system.
板凳
發(fā)表于 2025-3-22 01:50:42 | 只看該作者
Concluding Remarks and Further Research Directions,ed approaches mainly use the capability of a neural network to learn from historical data and to approximate nonlinear functions with an assumed accuracy. These two properties are extremely useful when dealing with nonlinear industrial plants for which a mathematical model is unknown or is very expensive to determine.
地板
發(fā)表于 2025-3-22 06:23:40 | 只看該作者
5#
發(fā)表于 2025-3-22 11:33:17 | 只看該作者
2198-4182 robust and fault-tolerant control.Allows the reader easy ac.Robust and Fault-Tolerant Control.?proposes novel automatic control strategies for nonlinear systems developed by means of artificial neural networks and pays special attention to robust and fault-tolerant approaches. The book discusses ro
6#
發(fā)表于 2025-3-22 14:07:44 | 只看該作者
7#
發(fā)表于 2025-3-22 18:23:17 | 只看該作者
Robust and Fault-Tolerant Control,networks. It contains essential information on direct control based on neural networks, model reference adaptive control, feed-forward control, model-predictive control and optimal control. The role played by neural networks in each control scheme is emphasized. Since a desirable feature of modern c
8#
發(fā)表于 2025-3-22 22:30:07 | 只看該作者
Model Predictive Control,pter is devoted to nonlinear predictive control developed by means of neural networks. Some of the most important issues connected with optimization and stability are investigated in detail. The next part introduces the sensor fault-tolerant control (For this purpose, predictive control is equipped
9#
發(fā)表于 2025-3-23 01:32:48 | 只看該作者
Control Reconfiguration,m detects a fault, estimates it and corrects a control law in order to compensate the fault effect observed in the control system. In order to create a control system, it is necessary to take into account the model of a plant as well as the state observer. Both models are designed using neural netwo
10#
發(fā)表于 2025-3-23 06:42:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杨浦区| 科技| 阳春市| 桑日县| 金湖县| 云浮市| 时尚| 衡南县| 格尔木市| 离岛区| 富裕县| 万宁市| 罗甸县| 屏东县| 行唐县| 莱芜市| 麻城市| 自贡市| 涟源市| 上饶县| 忻城县| 龙里县| 丽江市| 仁怀市| 东安县| 祁东县| 铁岭县| 商南县| 永州市| 诏安县| 涿鹿县| 昌黎县| 蒲江县| 潍坊市| 凤庆县| 沙坪坝区| 武汉市| 新河县| 康定县| 莱芜市| 运城市|