找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust Network Compressive Sensing; Guangtao Xue,Yi-Chao Chen,Minglu Li Book 2022 The Author(s), under exclusive license to Springer Natur

[復(fù)制鏈接]
查看: 6937|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:43:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Robust Network Compressive Sensing
編輯Guangtao Xue,Yi-Chao Chen,Minglu Li
視頻videohttp://file.papertrans.cn/832/831336/831336.mp4
概述Provides anomaly detection technologies for various networking data from Internet.Introduces the theory and assumption behind the compressive sensing technology.Covers the theory of compressive sensin
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Robust Network Compressive Sensing;  Guangtao Xue,Yi-Chao Chen,Minglu Li Book 2022 The Author(s), under exclusive license to Springer Natur
描述.This book investigates compressive sensing techniques to provide a robust and general framework for network data analytics. The goal is to introduce a compressive sensing framework for missing data interpolation, anomaly detection, data segmentation and activity recognition, and to demonstrate its benefits. Chapter 1 introduces compressive sensing, including its definition, limitation, and how it supports different network analysis applications. Chapter 2 demonstrates the feasibility of compressive sensing in network analytics, the authors we apply it to detect anomalies in the customer care call dataset from a Tier 1 ISP in the United States. A regression-based model is applied to find the relationship between calls and events. The authors illustrate that compressive sensing is effective in identifying important factors and can leverage the low-rank structure and temporal stability to improve the detection accuracy. Chapter 3? discusses that there are several challenges in applying compressive sensing to real-world data. Understanding the reasons behind the challenges is important for designing methods and mitigating their impact. The authors analyze a wide range of real-world tr
出版日期Book 2022
關(guān)鍵詞Network analytics; Anomaly detection; Compressive sensing; Activity recognition; Data-driven synchroniza
版次1
doihttps://doi.org/10.1007/978-3-031-16829-1
isbn_softcover978-3-031-16828-4
isbn_ebook978-3-031-16829-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Robust Network Compressive Sensing影響因子(影響力)




書目名稱Robust Network Compressive Sensing影響因子(影響力)學(xué)科排名




書目名稱Robust Network Compressive Sensing網(wǎng)絡(luò)公開度




書目名稱Robust Network Compressive Sensing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Robust Network Compressive Sensing被引頻次




書目名稱Robust Network Compressive Sensing被引頻次學(xué)科排名




書目名稱Robust Network Compressive Sensing年度引用




書目名稱Robust Network Compressive Sensing年度引用學(xué)科排名




書目名稱Robust Network Compressive Sensing讀者反饋




書目名稱Robust Network Compressive Sensing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:28:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:40:36 | 只看該作者
Book 2022a compressive sensing framework for missing data interpolation, anomaly detection, data segmentation and activity recognition, and to demonstrate its benefits. Chapter 1 introduces compressive sensing, including its definition, limitation, and how it supports different network analysis applications.
地板
發(fā)表于 2025-3-22 07:19:26 | 只看該作者
5#
發(fā)表于 2025-3-22 12:36:41 | 只看該作者
Robust Network Compressive Sensing978-3-031-16829-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
6#
發(fā)表于 2025-3-22 13:07:27 | 只看該作者
Introduction,opportunities for network analytics. Network analytics can provide deep insights into the complex interactions among network entities, and has a wide range of applications in wireless networks across all protocol layers.
7#
發(fā)表于 2025-3-22 18:14:55 | 只看該作者
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/r/image/831336.jpg
8#
發(fā)表于 2025-3-22 23:17:04 | 只看該作者
9#
發(fā)表于 2025-3-23 02:21:45 | 只看該作者
10#
發(fā)表于 2025-3-23 07:25:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闵行区| 文山县| 平山县| 抚宁县| 鹰潭市| 林芝县| 海林市| 菏泽市| 宿松县| 嵩明县| 海原县| 高密市| 兖州市| 旺苍县| 平乐县| 广安市| 同江市| 正蓝旗| 东城区| 临沧市| 威海市| 浦城县| 滦平县| 潼关县| 万年县| 涿州市| 合作市| 商丘市| 黑山县| 民勤县| 大冶市| 禄丰县| 长海县| 通渭县| 大庆市| 益阳市| 呼图壁县| 平泉县| 福州市| 华容县| 塔城市|