找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust Multi-Grid Methods; Proceedings of the F Wolfgang Hackbusch Conference proceedings 1989 Springer Fachmedien Wiesbaden 1989 Computer.

[復(fù)制鏈接]
樓主: melancholy
11#
發(fā)表于 2025-3-23 12:58:33 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:53 | 只看該作者
Multigrid Methods for the Solution of the Compressible Navier-Stokes Equations,quations as well. Examples for multigrid applications in explicit and implicit Euler Solutions are given by Cima, Johnson [5], Ni [6], Jameson [7] and by Hemker[8], Mulder[9] and others. Navier-Stokes applications can be found e. g. in the paper of Shaw, Wesseling [10], Thomas et al [11] and Schr?de
13#
發(fā)表于 2025-3-23 20:58:25 | 只看該作者
Multilevel Preconditioning Matrices and Multigrid V-Cycle Methods,iew this method in the framework of the classical multigrid method of V-cycle type. For this natural multigrid method it is enough to use the corresponding two-level ordering of the stiffness matrix at each discretization level. Then the smoothing procedure is naturally derived from the stiffness ma
14#
發(fā)表于 2025-3-24 02:08:22 | 只看該作者
15#
發(fā)表于 2025-3-24 04:42:06 | 只看該作者
16#
發(fā)表于 2025-3-24 08:23:29 | 只看該作者
Algebraic Multigrid Methods and the Schur Complement,In this paper we propose and discuss a general purely algebraic framework for multilevel iterative schemes for solving linear Systems where the role of the ‘coarse grid’ Operators is played by Schur complements.
17#
發(fā)表于 2025-3-24 13:24:15 | 只看該作者
18#
發(fā)表于 2025-3-24 16:12:04 | 只看該作者
19#
發(fā)表于 2025-3-24 20:42:16 | 只看該作者
Treatment of Singular Perturbation Problems with Multigrid Methods, linear problems were considered. An algorithm has been found heuristically for which the usual lower bound for the spectral radius of the iteration matrix of 1/2 does not hold. Artificial viscosity is used to obtain a stable discretisation. The algorithm is discussed and numerical results are presented.
20#
發(fā)表于 2025-3-24 23:22:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新龙县| 蓬安县| 花莲市| 平潭县| 资阳市| 临汾市| 洞头县| 平武县| 岳普湖县| 平阳县| 宽甸| 黄骅市| 巴楚县| 蒲城县| 临洮县| 曲靖市| 通城县| 宝清县| 定日县| 格尔木市| 瑞丽市| 宣威市| 彰化市| 潞城市| 手游| 罗定市| 三门县| 陈巴尔虎旗| 临泽县| 惠州市| 芜湖县| 子洲县| 肃宁县| 云和县| 大足县| 旌德县| 新巴尔虎右旗| 新巴尔虎左旗| 蓝山县| 肇州县| 湖南省|