找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust Latent Feature Learning for Incomplete Big Data; Di Wu Book 2023 The Author(s), under exclusive license to Springer Nature Singapor

[復(fù)制鏈接]
查看: 29164|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:57:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Robust Latent Feature Learning for Incomplete Big Data
編輯Di Wu
視頻videohttp://file.papertrans.cn/832/831322/831322.mp4
概述Exposes readers to a novel research perspective regarding incomplete big data analysis.Presents several robust latent feature learning methods for incomplete big data analysis.Achieves efficient and e
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Robust Latent Feature Learning for Incomplete Big Data;  Di Wu Book 2023 The Author(s), under exclusive license to Springer Nature Singapor
描述.Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty...In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth .L.1.-norm, improving robustness of latent feature learningusing .L.1.-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent
出版日期Book 2023
關(guān)鍵詞Latent feature learning; Representation learning; Robustness; Incomplete big data; Incomplete matrix; Mis
版次1
doihttps://doi.org/10.1007/978-981-19-8140-1
isbn_softcover978-981-19-8139-5
isbn_ebook978-981-19-8140-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
The information of publication is updating

書目名稱Robust Latent Feature Learning for Incomplete Big Data影響因子(影響力)




書目名稱Robust Latent Feature Learning for Incomplete Big Data影響因子(影響力)學(xué)科排名




書目名稱Robust Latent Feature Learning for Incomplete Big Data網(wǎng)絡(luò)公開度




書目名稱Robust Latent Feature Learning for Incomplete Big Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Robust Latent Feature Learning for Incomplete Big Data被引頻次




書目名稱Robust Latent Feature Learning for Incomplete Big Data被引頻次學(xué)科排名




書目名稱Robust Latent Feature Learning for Incomplete Big Data年度引用




書目名稱Robust Latent Feature Learning for Incomplete Big Data年度引用學(xué)科排名




書目名稱Robust Latent Feature Learning for Incomplete Big Data讀者反饋




書目名稱Robust Latent Feature Learning for Incomplete Big Data讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:43:40 | 只看該作者
Robust Latent Feature Learning for Incomplete Big Data978-981-19-8140-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
板凳
發(fā)表于 2025-3-22 00:55:19 | 只看該作者
Improve Robustness of Latent Feature Learning Using Double-Space,In a high dimensional and incomplete (HDI) matrix, the original data is sparse. Among numerous missing data estimation approaches [1–12], latent feature learning (LFL) is widely studied and adopted because of its high efficiency and scalability.
地板
發(fā)表于 2025-3-22 08:17:12 | 只看該作者
Di WuExposes readers to a novel research perspective regarding incomplete big data analysis.Presents several robust latent feature learning methods for incomplete big data analysis.Achieves efficient and e
5#
發(fā)表于 2025-3-22 11:55:00 | 只看該作者
6#
發(fā)表于 2025-3-22 15:15:41 | 只看該作者
7#
發(fā)表于 2025-3-22 17:47:40 | 只看該作者
Basis of Latent Feature Learning, services are provided online. Such numerous online services lead to the problem of information overload [1, 2]. Then, an intelligent and efficient system is desired to address such problem [3, 4]. Therefore, as one of the most efficient and effective approaches for addressing information load, the recommender system has attracted much attention.
8#
發(fā)表于 2025-3-22 23:59:39 | 只看該作者
Improving Robustness of Latent Feature Learning Using ,-Norm,s) to filter the required information is a very challenging problem [5, 6]. Up to now, various methods have been proposed to implement an RS, among which collaborative filtering (CF) is very popular [7–13].
9#
發(fā)表于 2025-3-23 02:06:58 | 只看該作者
10#
發(fā)表于 2025-3-23 07:11:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 23:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江门市| 北流市| 渑池县| 宝丰县| 会泽县| 将乐县| 普兰店市| 平安县| 霍城县| 文水县| 磴口县| 安泽县| 新营市| 达孜县| 沙湾县| 什邡市| 巧家县| 泸水县| 雷山县| 田东县| 焦作市| 兰西县| 靖州| 江孜县| 驻马店市| 厦门市| 左权县| 江津市| 青岛市| 司法| 苍山县| 望都县| 龙州县| 仁布县| 翁牛特旗| 枝江市| 隆安县| 共和县| 偏关县| 大名县| 塔河县|