找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust Discrete Optimization and Its Applications; Panos Kouvelis,Gang Yu Book 1997 Springer Science+Business Media Dordrecht 1997 Mathema

[復(fù)制鏈接]
樓主: Fillmore
21#
發(fā)表于 2025-3-25 03:25:25 | 只看該作者
22#
發(fā)表于 2025-3-25 08:48:35 | 只看該作者
Easily Solvable Cases of Robust Discrete Optimization Problems,s an optimistic tone by describing polynomially solvable problems. The main source of difficulty of robust optimization problems comes from its min-max (or max-min) nature and its added dimensionality — the scenario sets. In many cases where both the decision variables and the scenario sets are cont
23#
發(fā)表于 2025-3-25 12:49:18 | 只看該作者
Algorithmic Developments for Difficult Robust Discrete Optimization Problems,hapter 3 we also know that most robust discrete optimization problems belong to the NP-hard class. In this chapter, we present our approach for solving these difficult robust discrete optimization problems. We are in this chapter restricting our attention to robust discrete optimization problems wit
24#
發(fā)表于 2025-3-25 17:53:50 | 只看該作者
Robust 1-Median Location Problems: Dynamic Aspects and Uncertainty, problem referred to as the dynamically robust 1-median location on a tree. The robust 1-median on a tree problem, as introduced in Chapter 2, addresses the location of a single facility on a tree network in the presence of significant uncertainty in the node weights (node demands) and edge lengths
25#
發(fā)表于 2025-3-25 21:10:00 | 只看該作者
Robust Scheduling Problems,over that a schedule which is optimal with respect to a deterministic or stochastic scheduling model yields quite poor performance when evaluated relative to the actual processing times. In these environments, the notion of schedule robustness, i.e., determining the schedule with the best worst-case
26#
發(fā)表于 2025-3-26 03:31:12 | 只看該作者
27#
發(fā)表于 2025-3-26 07:01:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:23:10 | 只看該作者
29#
發(fā)表于 2025-3-26 15:30:39 | 只看該作者
Easily Solvable Cases of Robust Discrete Optimization Problems,tability requirement is a luxury in discrete optimization. Even the primal and its relaxation dual will in most cases inevitably lead to a gap between the corresponding objective values. We believe that the number of polynomially solvable discrete robust optimization problems is very limited.
30#
發(fā)表于 2025-3-26 20:45:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三穗县| 贵溪市| 宁城县| 甘德县| 焦作市| 贵南县| 墨江| 孝义市| 柳江县| 湾仔区| 封开县| 泰来县| 崇信县| 金坛市| 呈贡县| 元江| 澄江县| 阿图什市| 翁源县| 离岛区| 吴旗县| 夏河县| 东城区| 鄄城县| 佛冈县| 武穴市| 应城市| 湖北省| 陈巴尔虎旗| 肥乡县| 稷山县| 新巴尔虎右旗| 嘉义市| 额尔古纳市| 蚌埠市| 远安县| 平遥县| 铜鼓县| 仙游县| 郁南县| 临西县|