找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust Digital Processing of Speech Signals; Branko Kovacevic,Milan M. Milosavljevic,Milan Mark Book 2017 Academic Mind and Springer Inter

[復制鏈接]
查看: 46262|回復: 38
樓主
發(fā)表于 2025-3-21 19:42:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Robust Digital Processing of Speech Signals
編輯Branko Kovacevic,Milan M. Milosavljevic,Milan Mark
視頻videohttp://file.papertrans.cn/832/831303/831303.mp4
概述Presents results of long-term cooperation in the research on speech signal processing.Highlights the significance of speech generation modeling.Introduces an innovative robust algorithm for digital sp
圖書封面Titlebook: Robust Digital Processing of Speech Signals;  Branko Kovacevic,Milan M. Milosavljevic,Milan Mark Book 2017 Academic Mind and Springer Inter
描述This book focuses on speech signal phenomena, presenting a robustification of the usual speech generation models with regard to the presumed types of excitation signals, which is equivalent to the introduction of a class of nonlinear models and the corresponding criterion functions for parameter estimation. Compared to the general class of nonlinear models, such as various neural networks, these models possess good properties of controlled complexity, the option of working in “online” mode, as well as a low information volume for efficient speech encoding and transmission. Providing comprehensive insights, the book is based on the authors’ research, which has already been published, supplemented by additional texts discussing general considerations of speech modeling, linear predictive analysis and robust parameter estimation.
出版日期Book 2017
關鍵詞CELP Coder; Digital Speech Signal Processing; Linear Modelling of Speech Signals; Pattern Recognition f
版次1
doihttps://doi.org/10.1007/978-3-319-53613-2
isbn_softcover978-3-319-85197-6
isbn_ebook978-3-319-53613-2
copyrightAcademic Mind and Springer International Publishing AG 2017
The information of publication is updating

書目名稱Robust Digital Processing of Speech Signals影響因子(影響力)




書目名稱Robust Digital Processing of Speech Signals影響因子(影響力)學科排名




書目名稱Robust Digital Processing of Speech Signals網(wǎng)絡公開度




書目名稱Robust Digital Processing of Speech Signals網(wǎng)絡公開度學科排名




書目名稱Robust Digital Processing of Speech Signals被引頻次




書目名稱Robust Digital Processing of Speech Signals被引頻次學科排名




書目名稱Robust Digital Processing of Speech Signals年度引用




書目名稱Robust Digital Processing of Speech Signals年度引用學科排名




書目名稱Robust Digital Processing of Speech Signals讀者反饋




書目名稱Robust Digital Processing of Speech Signals讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:03:49 | 只看該作者
Robust Recursive AR Analysis of Speech Signal, or block) algorithms, handled in previous chapter. In the case of packet processing, it is assumed that the speech signal at a given interval of analysis is approximately stationary. However, due to the natural nonstationarity of the speech signal averaging is performed at longer analyzed intervals
板凳
發(fā)表于 2025-3-22 01:42:46 | 只看該作者
地板
發(fā)表于 2025-3-22 05:40:38 | 只看該作者
5#
發(fā)表于 2025-3-22 11:56:19 | 只看該作者
ing.Introduces an innovative robust algorithm for digital spThis book focuses on speech signal phenomena, presenting a robustification of the usual speech generation models with regard to the presumed types of excitation signals, which is equivalent to the introduction of a class of nonlinear models
6#
發(fā)表于 2025-3-22 16:07:08 | 只看該作者
Robust Non-recursive AR Analysis of Speech Signal,s of the adopted AR model are estimated. It is started from the assumption that the signal at the considered interval is stationary, i.e., one can select segments of speech signal on which the system for speech production can be modeled by a stationary (time-invariant) model.
7#
發(fā)表于 2025-3-22 20:34:04 | 只看該作者
Robust Recursive AR Analysis of Speech Signal,ysis is approximately stationary. However, due to the natural nonstationarity of the speech signal averaging is performed at longer analyzed intervals, the consequence of which is a shift of the estimation of the parameters of the adopted AR model of signal.
8#
發(fā)表于 2025-3-23 00:39:42 | 只看該作者
Applications of Robust Estimators in Speech Signal Processing,y model the vocal tract. Robustification of non-recursive LP methods ensures lower sensitivity of estimations to the fundamental speech frequency, as well as their lower sensitivity to the length and position of the analysis interval.
9#
發(fā)表于 2025-3-23 04:01:52 | 只看該作者
Book 2017excitation signals, which is equivalent to the introduction of a class of nonlinear models and the corresponding criterion functions for parameter estimation. Compared to the general class of nonlinear models, such as various neural networks, these models possess good properties of controlled comple
10#
發(fā)表于 2025-3-23 09:10:29 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 16:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
友谊县| 晋江市| 容城县| 黄石市| 鄂托克旗| 怀化市| 博客| 福安市| 定边县| 罗田县| 耿马| 朔州市| 永和县| 库伦旗| 峨边| 浦城县| 桐城市| 铁力市| 靖宇县| 天镇县| 凌源市| 无极县| 双柏县| 广汉市| 岱山县| 普洱| 乐安县| 沭阳县| 邛崃市| 和林格尔县| 儋州市| 杭锦后旗| 清新县| 桂东县| 泽普县| 资溪县| 乐安县| 沅江市| 禹州市| 玉溪市| 余庆县|