找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Robust Bayesian Analysis; David Ríos Insua,Fabrizio Ruggeri Book 2000 Springer Science+Business Media New York 2000 Markov chain Monte Car

[復(fù)制鏈接]
查看: 29808|回復(fù): 50
樓主
發(fā)表于 2025-3-21 16:53:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Robust Bayesian Analysis
編輯David Ríos Insua,Fabrizio Ruggeri
視頻videohttp://file.papertrans.cn/832/831265/831265.mp4
叢書名稱Lecture Notes in Statistics
圖書封面Titlebook: Robust Bayesian Analysis;  David Ríos Insua,Fabrizio Ruggeri Book 2000 Springer Science+Business Media New York 2000 Markov chain Monte Car
描述Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in- terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustn
出版日期Book 2000
關(guān)鍵詞Markov chain Monte Carlo; Scheme; Volume; computation; decision problem; likelihood; maintenance; metrics; m
版次1
doihttps://doi.org/10.1007/978-1-4612-1306-2
isbn_softcover978-0-387-98866-5
isbn_ebook978-1-4612-1306-2Series ISSN 0930-0325 Series E-ISSN 2197-7186
issn_series 0930-0325
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

書目名稱Robust Bayesian Analysis影響因子(影響力)




書目名稱Robust Bayesian Analysis影響因子(影響力)學(xué)科排名




書目名稱Robust Bayesian Analysis網(wǎng)絡(luò)公開度




書目名稱Robust Bayesian Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Robust Bayesian Analysis被引頻次




書目名稱Robust Bayesian Analysis被引頻次學(xué)科排名




書目名稱Robust Bayesian Analysis年度引用




書目名稱Robust Bayesian Analysis年度引用學(xué)科排名




書目名稱Robust Bayesian Analysis讀者反饋




書目名稱Robust Bayesian Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:21:34 | 只看該作者
https://doi.org/10.1007/978-1-4612-1306-2Markov chain Monte Carlo; Scheme; Volume; computation; decision problem; likelihood; maintenance; metrics; m
板凳
發(fā)表于 2025-3-22 04:25:03 | 只看該作者
On the Use of the Concentration Function in Bayesian RobustnessWe present applications of the concentration function in both global and local sensitivity analyses, along with its connection with Choquet capacities.
地板
發(fā)表于 2025-3-22 06:11:13 | 只看該作者
5#
發(fā)表于 2025-3-22 12:32:12 | 只看該作者
6#
發(fā)表于 2025-3-22 15:17:32 | 只看該作者
Bayesian Robustnesse need for a robust approach. Common types of robustness analyses are illustrated, including global and local sensitivity analysis and loss and likelihood robustness. Relationships with other approaches are also discussed. Finally, possible directions for future research are outlined.
7#
發(fā)表于 2025-3-22 20:39:01 | 只看該作者
Topics on the Foundations of Robust Bayesian Analysisich underpins Bayesian inference and decision analysis. This chapter surveys whether a similar situation holds for robust Bayesian analysis, overviewing foundational results leading to standard computations in robust Bayesian analysis.
8#
發(fā)表于 2025-3-22 22:43:00 | 只看該作者
Stability of Bayes Decisions and Applications Chuang, who gave the initial formulation of the problem, the article focuses on a major contribution due to Salinetti and the subsequent developments. The discussion also includes applications of stability to the local and global robustness issues relating to the prior distribution and the loss function of a Bayes decision problem.
9#
發(fā)表于 2025-3-23 04:52:41 | 只看該作者
10#
發(fā)表于 2025-3-23 05:54:31 | 只看該作者
Local Robustness in Bayesian Analysisries of local sensitivity often have nonsensical asymptotic behaviour, raising thorny questions about their calibration. In this article the local approach is broadly defined, ranging from differentiation of functions (e.g., assessing sensitivity to hyperparameters) to differentiation of functionals
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐乡市| 平乐县| 拉孜县| 巴彦淖尔市| 寿光市| 安岳县| 克拉玛依市| 建昌县| 措美县| 柞水县| 宁陵县| 新兴县| 芷江| 运城市| 张家口市| 文成县| 胶南市| 眉山市| 漯河市| 嵊泗县| 丹凤县| 安庆市| 台中县| 庆云县| 宁强县| 桂东县| 屯留县| 石棉县| 防城港市| 唐山市| 星子县| 靖边县| 墨江| 卫辉市| 个旧市| 江山市| 娄底市| 扎鲁特旗| 山东省| 通河县| 乌审旗|