找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Robotics, Control and Computer Vision; Select Proceedings o Hariharan Muthusamy,János Botzheim,Richi Nayak Conference proceedings 2023 The

[復(fù)制鏈接]
樓主: Polk
41#
發(fā)表于 2025-3-28 15:06:20 | 只看該作者
Recovering Images Using Image Inpainting Techniquess available for the image inpainting tasks and analyzes their effectiveness on established metrics. Navier–Stokes and Telea algorithms achieve PSNR 32 between 34 and SSIM above 0.96 for smaller inpainting tasks. Telea algorithm performs better as compared to Navier–Stokes method.
42#
發(fā)表于 2025-3-28 21:18:36 | 只看該作者
43#
發(fā)表于 2025-3-29 02:05:15 | 只看該作者
44#
發(fā)表于 2025-3-29 04:39:28 | 只看該作者
Challenges and Opportunity for Salient Object Detection in COVID-19 Era: A StudyAcute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus is dangerous for human life and considerably affects human lifestyle. In this paper, we focus on the effect of COVID-19 on salient object detection performance due to certain factors such as humans wearing a face mask that may degrade
45#
發(fā)表于 2025-3-29 08:50:52 | 只看該作者
Human Activity Recognition Using Deep Learningatistics to security-based surveillance. In this work, we have trained CNNs like ResNet50, ResNet101, InceptionV3, and InceptionResNetV2 on a common human activity dataset (Stanford 40) and achieved an accuracy of 80.41% with ResNet101 on image data and an accuracy of 54.16% with ResNet101 on video
46#
發(fā)表于 2025-3-29 11:51:52 | 只看該作者
47#
發(fā)表于 2025-3-29 19:00:45 | 只看該作者
Literature Review for Automatic Detection and Classification of Intracranial Brain Hemorrhage Using categories, namely epidural hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, intraventricular hemorrhage, and intraparenchymal hemorrhage. We can distinguish between these subtypes on the basis of the character of bleeding and its location in the brain region. Developments in the field of A
48#
發(fā)表于 2025-3-29 22:36:04 | 只看該作者
49#
發(fā)表于 2025-3-29 23:56:59 | 只看該作者
50#
發(fā)表于 2025-3-30 06:07:06 | 只看該作者
Performance Evaluation of Single Sample Ear Recognition Methodsrecognizing a person. The problem becomes even more complex when a single training sample is available. There have been several methods in the literature for single sample ear recognition. However, which best performs best is not clear. Therefore, in this paper, we perform a comparative study of fiv
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 16:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北县| 德化县| 洮南市| 惠东县| 双峰县| 射阳县| 南丰县| 安顺市| 南木林县| 葵青区| 海门市| 义乌市| 武汉市| 汤阴县| 彭泽县| 扎鲁特旗| 辛集市| 南充市| 崇左市| 鲁山县| 靖远县| 武邑县| 临沧市| 荥阳市| 清苑县| 老河口市| 浦江县| 苍梧县| 台北市| 曲阳县| 扎赉特旗| 雷波县| 孝昌县| 吉木萨尔县| 江孜县| 禹州市| 富民县| 巴楚县| 盐池县| 平陆县| 巴楚县|