找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: RoboCup 2018: Robot World Cup XXII; Dirk Holz,Katie Genter,Oskar von Stryk Conference proceedings 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
樓主: affidavit
11#
發(fā)表于 2025-3-23 10:38:14 | 只看該作者
End-to-End Deep Imitation Learning: Robot Soccer Case Studynable the development of machine learning methods that can get high dimensional data as an input. In this work, we use imitation learning to teach the robot to dribble the ball to the goal. We use B-Human robot software to collect demonstration data and a deep convolutional network to represent the
12#
發(fā)表于 2025-3-23 16:15:23 | 只看該作者
Designing Convolutional Neural Networks Using a Genetic Approach for Ball Detectionman. This paper describes the design of a convolutional neural network used for the detection of the black and white ball - one of the key contributions that led to the team’s success. We present a genetic design approach that optimizes network hyperparameters for a cost effective inference on the N
13#
發(fā)表于 2025-3-23 20:50:49 | 只看該作者
14#
發(fā)表于 2025-3-23 23:19:08 | 只看該作者
Mimicking an Expert Team Through the Learning of Evaluation Functions from Action SequencesThe aim of this paper is to propose a method that improves the performance of a team by mimicking a stronger one. For this purpose, a neural network is employed to model an expert team’s evaluation function. The neural network is trained by using positive and negative episodes of action sequences th
15#
發(fā)表于 2025-3-24 03:45:27 | 只看該作者
Jetson, Where Is the Ball? Using Neural Networks for Ball Detection at RoboCup 2017n. A patch-based classification approach is used. Two different ConvNet architectures, the Inception v3 network by Google and AlexNet are evaluated in the context of a ROS-based architecture on a robot with a Jetson GPU board. The aim is to allow for an efficient re-training of neural networks in th
16#
發(fā)表于 2025-3-24 07:28:45 | 只看該作者
17#
發(fā)表于 2025-3-24 11:11:48 | 只看該作者
Multi-Robot Fast-Paced Coordination with Leader Electionnt our solution for leader election among a team, which is based on the Raft algorithm and tackles two of its limitations. The proposed solution was implemented in a real team of soccer-playing robots and the experimental results are thoroughly presented and discussed.
18#
發(fā)表于 2025-3-24 15:40:11 | 只看該作者
19#
發(fā)表于 2025-3-24 21:14:17 | 只看該作者
Learning Skills for Small Size League RoboCup skills in the CMDragons’ architecture using a physically realistic simulator. We then show how RL can be leveraged to learn simple skills that can be combined by humans into high level tactics that allow an agent to navigate to a ball, aim and shoot on a goal.
20#
發(fā)表于 2025-3-24 23:56:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鸡泽县| 绥江县| 虎林市| 铁岭县| 宽城| 永安市| 孝昌县| 和田市| 五台县| 开阳县| 阿坝| 锡林郭勒盟| 柳州市| 遵义市| 兴国县| 湖州市| 慈溪市| 万安县| 五常市| 五原县| 赤水市| 昌黎县| 广州市| 秦皇岛市| 永寿县| 民勤县| 临湘市| 神池县| 张家港市| 遂溪县| 东兴市| 久治县| 霍山县| 伊宁市| 张家港市| 梅河口市| 灌云县| 临颍县| 郁南县| 固镇县| 娄底市|