找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Roadmap to Sustainable Textiles and Clothing; Regulatory Aspects a Subramanian Senthilkannan Muthu Book 2015 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: MOTE
31#
發(fā)表于 2025-3-26 22:46:12 | 只看該作者
32#
發(fā)表于 2025-3-27 04:15:42 | 只看該作者
33#
發(fā)表于 2025-3-27 09:02:08 | 只看該作者
M?nica Cavalcanti Sá de Abreunt of algebraic geometry, it is more convenient to study the tubular fibration . where . with . and . [., .]. After this fundamental result, many researches have been carried out in various related directions. Among them, the generalization of the fibration structure and related geometry to the situ
34#
發(fā)表于 2025-3-27 09:41:19 | 只看該作者
Shanthi Radhakrishnanterferences. The first preliminary part introduces the needed notations, definitions and terminologies: e.g. resolutions, universal abelian coverings, natural line bundles on resolutions, links, spin. structures on the links. Here we also recall certain vanishing theorems and statements connected wi
35#
發(fā)表于 2025-3-27 14:00:02 | 只看該作者
36#
發(fā)表于 2025-3-27 21:01:39 | 只看該作者
Nga H. Nguyen,Robert J. S. Beeton,Anthony Halog,An T. Duongfundamental constructions impossible directly. However, there is a unique proper map . which has the property that it is an isomorphism over the non-singular part . of . and the tangent bundle . lifted to . by this isomorphism extends uniquely to a vector bundle on .. For ., the set-theoretical fibe
37#
發(fā)表于 2025-3-27 23:19:13 | 只看該作者
38#
發(fā)表于 2025-3-28 04:56:22 | 只看該作者
39#
發(fā)表于 2025-3-28 08:05:22 | 只看該作者
Luis Almeidan the topology of the leaves and the structure of the leaf space. We state criteria of topological conjugacy for any two foliation germs. These are based on the key notion of monodromy of a singular foliation, a topological invariant of geometric and dynamic nature. After a historical introduction,
40#
發(fā)表于 2025-3-28 12:23:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上饶市| 梧州市| 东乌珠穆沁旗| 黑河市| 涟源市| 阳信县| 拉萨市| 和林格尔县| 忻城县| 扶余县| 东丰县| 太保市| 桃源县| 武平县| 辛集市| 色达县| 太湖县| 新河县| 凤凰县| 新疆| 宝丰县| 晋中市| 灵台县| 进贤县| 通渭县| 双城市| 咸阳市| 渝中区| 吉林市| 宁强县| 宜丰县| 长寿区| 定州市| 平度市| 齐河县| 云安县| 崇信县| 广河县| 泽州县| 隆子县| 岳普湖县|