找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rings, Polynomials, and Modules; Marco Fontana,Sophie Frisch,Paolo Zanardo Book 2017 Springer International Publishing AG 2017 Gaussian pr

[復(fù)制鏈接]
樓主: 可入到
21#
發(fā)表于 2025-3-25 03:36:36 | 只看該作者
A Note on Analytically Irreducible Domains,ral closure .. of . is finitely generated as .-module. However, the proof of this result is split into pieces and spread over the literature. This paper collects the pieces and assembles them to a complete proof. Next to several results on integral extensions and completions of modules, we use Cohen
22#
發(fā)表于 2025-3-25 08:34:21 | 只看該作者
Integer-Valued Polynomials on Algebras: A Survey of Recent Results and Open Questions,ars, attention has turned to generalizations of Int(.) where the polynomials act on .-algebras rather than on . itself. We survey the present activity on this topic and propose questions for further research.
23#
發(fā)表于 2025-3-25 15:34:07 | 只看該作者
Unique Factorization in Torsion-Free Modules, In particular, it is shown that locally projective modules, flat Mittag-Leffler modules and torsion-free content modules are factorial modules. Moreover, factorially closed extensions of factorial domains are characterized with help of factorial modules.
24#
發(fā)表于 2025-3-25 17:38:33 | 只看該作者
Commutative Rings Whose Finitely Generated Ideals are Quasi-Flat,ring . whose finitely generated ideals are quasi-flat is of .-dimension ≤ 3, and this dimension ≤ 2 if . is local. This extends a former result about the class of arithmetical rings. Moreover, if . has a unique minimal prime ideal, then its finitely generated ideals are quasi-projective if they are quasi-flat.
25#
發(fā)表于 2025-3-25 20:34:35 | 只看該作者
26#
發(fā)表于 2025-3-26 01:26:20 | 只看該作者
27#
發(fā)表于 2025-3-26 05:17:38 | 只看該作者
A gg-Cancellative Semistar Operation on an Integral Domain Need Not Be gh-Cancellative,if (..). = (..). implies ... = ... for every . ∈ x and every ..,?.. ∈ y, then ? is called xy-cancellative. We prove that a gg-cancellative semistar operation on an integral domain need not be gh-cancellative.
28#
發(fā)表于 2025-3-26 12:17:41 | 只看該作者
,Quasi-Prüfer Extensions of Rings,r extensions that are quasi-Prüfer, the converse being not true. Quasi-Prüfer extensions are closely linked to finiteness properties of fibers. Applications are given for FMC extensions, because they are quasi-Prüfer.
29#
發(fā)表于 2025-3-26 16:42:55 | 只看該作者
30#
發(fā)表于 2025-3-26 17:11:48 | 只看該作者
Book 2017 also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in boo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
弋阳县| 廊坊市| 井研县| 邯郸县| 原阳县| 元朗区| 辽宁省| 英山县| 集安市| 广东省| 新巴尔虎右旗| 西昌市| 资阳市| 安乡县| 金坛市| 吉木萨尔县| 全州县| 宁城县| 韶关市| 澜沧| 四会市| 刚察县| 响水县| 乌兰县| 资源县| 朝阳市| 东方市| 东至县| 清镇市| 清流县| 垫江县| 聂荣县| 左权县| 山东| 襄汾县| 安仁县| 霞浦县| 若尔盖县| 富民县| 怀来县| 濉溪县|