找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rings of Continuous Functions; Leonard Gillman,Meyer Jerison Textbook 1960 Springer-Verlag New York 1960 Compactification.algebra.class.fu

[復(fù)制鏈接]
樓主: Odious
11#
發(fā)表于 2025-3-23 11:22:15 | 只看該作者
12#
發(fā)表于 2025-3-23 17:06:20 | 只看該作者
13#
發(fā)表于 2025-3-23 21:25:11 | 只看該作者
14#
發(fā)表于 2025-3-24 01:05:31 | 只看該作者
Discrete Spaces. Nonmeasurable Cardinals,alcompact. The question arises whether . discrete spaces are realcompact. Since, among discrete spaces, the cardinal is the only significant variable, this is, in fact, a question about cardinal numbers.
15#
發(fā)表于 2025-3-24 02:33:51 | 只看該作者
Hyper-Real Residue Class Fields,). Although none of the material developed after Chapter 5 will be called upon, we shall need quite a bit more of the abstract theory of fields than heretofore. We begin with a summary of these algebraic prerequisites.
16#
發(fā)表于 2025-3-24 06:34:13 | 只看該作者
Prime Ideals,heorem 5.5), and hence that the canonical homomorphism .) of . onto . is a lattice homomorphism as well. Moreover, the integral domain . is totally ordered. The set of images of the constant functions is a copy of ., and we identify this copy with . itself.
17#
發(fā)表于 2025-3-24 14:21:27 | 只看該作者
Uniform Spaces,y realcompact space admits a complete structure. One of the outstanding successes of the theory of rings of continuous functions is Shirota’s result that, barring measurable cardinals, the converse is also true, so that the spaces admitting complete structures are precisely the realcompact spaces.
18#
發(fā)表于 2025-3-24 14:51:08 | 只看該作者
19#
發(fā)表于 2025-3-24 22:43:29 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:07 | 只看該作者
Ordered Residue Class Rings,pter initiates the study of residue class fields modulo arbitrary maximal ideals. Each such field has the following properties, as will be shown: it is a totally ordered field, whose order is induced by the partial order in ., and the image of the set of constant functions is an isomorphic copy—nece
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 17:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牟定县| 纳雍县| 宁陵县| 富川| 南涧| 临沧市| 牙克石市| 北川| 洪泽县| 达尔| 株洲县| 寿宁县| 宜城市| 湄潭县| 射阳县| 静安区| 安吉县| 涟水县| 武宁县| 凤台县| 烟台市| 那曲县| 新乡市| 中牟县| 武宣县| 乐平市| 平阴县| 江口县| 峨眉山市| 新建县| 永和县| 旺苍县| 泰和县| 江源县| 淳安县| 五寨县| 石嘴山市| 夹江县| 元氏县| 桃园市| 图木舒克市|