找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rings and Geometry; Rüstem Kaya,Peter Plaumann,Karl Strambach Book 1985 D. Reidel Publishing Company 1985 algebra.algebraic geometry.commu

[復(fù)制鏈接]
樓主: ETHOS
31#
發(fā)表于 2025-3-26 23:24:44 | 只看該作者
Ulrich Brehmm was the relationship between the physical world and the world of the mind; he explored this relationship in a series of essays, fantasias and visions beginning with ‘The Rediscovery of the Unique’ in 1891 and culminating in . in 1945. In . (1942) he reminded his readers that for many years he had
32#
發(fā)表于 2025-3-27 04:17:25 | 只看該作者
33#
發(fā)表于 2025-3-27 06:09:48 | 只看該作者
34#
發(fā)表于 2025-3-27 10:46:01 | 只看該作者
35#
發(fā)表于 2025-3-27 15:27:11 | 只看該作者
Principles of Non-Commutative Algebraic Geometryd k. A great deal of insight into this problem is obtained by taking the geometric picture into account: The solutions form a subset of affine n-space, IA.(k), and if one admits points at infinity, by taking homogeneous coordinates, one has projective space IP.(k).
36#
發(fā)表于 2025-3-27 20:27:03 | 只看該作者
37#
發(fā)表于 2025-3-27 23:28:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:32:28 | 只看該作者
Finite Hjelmslev Planes and Klingenberg Epimorphismsctorizations called “solutions” of maps ? : Π → Π′ where (? ,Π ,Π′) is a “Klingenberg structure”. Such a K-structure is called a “PK-plane” when Π′ is a projective plane. The most beautiful examples of PK-planes are the “desarguesian” ones; they are obtained by using homogeneous coordinates over loc
39#
發(fā)表于 2025-3-28 06:44:55 | 只看該作者
40#
發(fā)表于 2025-3-28 10:57:34 | 只看該作者
Projective Ring Planes and Their Homomorphismsr with an incidence relation and a neighbor relation and which has to satisfy two groups of axioms. The axioms in the first group express elementary relations between points and lines such as, e.g., the existence of a unique line joining any two non-neighboring points, and define what is called a Ba
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和政县| 家居| 介休市| 宜黄县| 米脂县| 伊春市| 若尔盖县| 石台县| 灵石县| 大同市| 施甸县| 通江县| 拉萨市| 高台县| 蒙阴县| 永和县| 通渭县| 兰溪市| 山东省| 襄汾县| 镇远县| 平远县| 高邮市| 海城市| 宾川县| 西平县| 兴城市| 江口县| 海安县| 澎湖县| 慈利县| 开鲁县| 丰都县| 阿拉善左旗| 二连浩特市| 天津市| 高邑县| 凌海市| 奉新县| 卢氏县| 鹰潭市|