找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rings and Categories of Modules; Frank W. Anderson,Kent R. Fuller Textbook 1992Latest edition Springer-Verlag New York, Inc. 1992 algebra.

[復(fù)制鏈接]
樓主: 休耕地
11#
發(fā)表于 2025-3-23 12:40:51 | 只看該作者
Equivalence and Duality for Module Categories,ndomorphism rings of abelian groups. As we shall see the Wedderburn Theorem for simple artinian rings can be interpreted as asserting that a ring . is simple artinian if and only if the category . is “the same” as the category . for some division ring .. On the other hand, if . is a division ring, t
12#
發(fā)表于 2025-3-23 14:58:12 | 只看該作者
Injective Modules, Projective Modules, and Their Decompositions,ns of noetherian rings in terms of the structure of injective modules. Then, after considering the decomposition theory of direct sums of countably generated modules, we proceed to the study of semiperfect and perfect rings (those over which all finitely generated modules and, respectively, all modu
13#
發(fā)表于 2025-3-23 21:41:07 | 只看該作者
14#
發(fā)表于 2025-3-23 22:28:37 | 只看該作者
15#
發(fā)表于 2025-3-24 04:01:32 | 只看該作者
16#
發(fā)表于 2025-3-24 09:53:00 | 只看該作者
Functors Between Module Categories,it should now be clear that the structure of the category . determines to a significant extent the structure of the ring .. Thus in this chapter we turn to the direct studies of these categories .. Our starting point will be the study of certain natural “functors” or “homomorphisms” between pairs of these categories.
17#
發(fā)表于 2025-3-24 12:05:46 | 只看該作者
18#
發(fā)表于 2025-3-24 16:35:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:30:42 | 只看該作者
https://doi.org/10.1007/978-1-4612-4418-9algebra; homomorphism; representation theory; ring; transformation
20#
發(fā)表于 2025-3-24 23:43:28 | 只看該作者
978-1-4612-8763-6Springer-Verlag New York, Inc. 1992
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥阳县| 新昌县| 黄大仙区| 枣强县| 青阳县| 从江县| 绥滨县| 贺兰县| 大荔县| 阳谷县| 长汀县| 吕梁市| 耒阳市| 东海县| 屯门区| 南阳市| 张家口市| 吉木萨尔县| 北安市| 嘉禾县| 大港区| 芜湖市| 南木林县| 含山县| 罗城| 马公市| 南通市| 庆安县| 鄂尔多斯市| 克东县| 博白县| 民勤县| 宜州市| 淮滨县| 青神县| 大英县| 桂林市| 夹江县| 新巴尔虎左旗| 缙云县| 怀柔区|