找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rigorous Time Slicing Approach to Feynman Path Integrals; Daisuke Fujiwara Book 2017 Springer Japan KK 2017 Feynman path integral.Feynman

[復(fù)制鏈接]
查看: 22688|回復(fù): 46
樓主
發(fā)表于 2025-3-21 18:19:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Rigorous Time Slicing Approach to Feynman Path Integrals
編輯Daisuke Fujiwara
視頻videohttp://file.papertrans.cn/831/830403/830403.mp4
概述Assumes the potential is such that it is smooth and its derivatives of order equal to or higher than two are bounded.Establishes the proof by the time slicing method, the method Feynman himself used,
叢書名稱Mathematical Physics Studies
圖書封面Titlebook: Rigorous Time Slicing Approach to Feynman Path Integrals;  Daisuke Fujiwara Book 2017 Springer Japan KK 2017 Feynman path integral.Feynman
描述This book proves that Feynman‘s original definition of the path integral actually converges to the fundamental solution of the Schr?dinger equation at least in the short term if the potential is differentiable sufficiently many times and its derivatives of order equal to or higher than two are bounded. The semi-classical asymptotic formula up to the second term of the fundamental solution is also proved by a method different from that of Birkhoff. A bound of the remainder term is also proved..The Feynman path integral is a method of quantization using the Lagrangian function, whereas Schr?dinger‘s quantization uses the Hamiltonian function. These two methods are believed to be equivalent. But equivalence is not fully proved mathematically, because, compared with Schr?dinger‘s method, there is still much to be done concerning rigorous mathematical treatment of Feynman‘s method. Feynman himself defined a path integral as the limit of a sequence of integrals over finite-dimensional spaces which is obtained by dividing the time interval into small pieces. This method is called the time slicing approximation method or the time slicing method..This book consists of two parts. Part I is t
出版日期Book 2017
關(guān)鍵詞Feynman path integral; Feynman propagator; Fundamental solution; Quantum mechanics; Schroedinger equatio
版次1
doihttps://doi.org/10.1007/978-4-431-56553-6
isbn_softcover978-4-431-56818-6
isbn_ebook978-4-431-56553-6Series ISSN 0921-3767 Series E-ISSN 2352-3905
issn_series 0921-3767
copyrightSpringer Japan KK 2017
The information of publication is updating

書目名稱Rigorous Time Slicing Approach to Feynman Path Integrals影響因子(影響力)




書目名稱Rigorous Time Slicing Approach to Feynman Path Integrals影響因子(影響力)學(xué)科排名




書目名稱Rigorous Time Slicing Approach to Feynman Path Integrals網(wǎng)絡(luò)公開度




書目名稱Rigorous Time Slicing Approach to Feynman Path Integrals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Rigorous Time Slicing Approach to Feynman Path Integrals被引頻次




書目名稱Rigorous Time Slicing Approach to Feynman Path Integrals被引頻次學(xué)科排名




書目名稱Rigorous Time Slicing Approach to Feynman Path Integrals年度引用




書目名稱Rigorous Time Slicing Approach to Feynman Path Integrals年度引用學(xué)科排名




書目名稱Rigorous Time Slicing Approach to Feynman Path Integrals讀者反饋




書目名稱Rigorous Time Slicing Approach to Feynman Path Integrals讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:45:43 | 只看該作者
https://doi.org/10.1007/978-4-431-56553-6Feynman path integral; Feynman propagator; Fundamental solution; Quantum mechanics; Schroedinger equatio
板凳
發(fā)表于 2025-3-22 04:19:31 | 只看該作者
978-4-431-56818-6Springer Japan KK 2017
地板
發(fā)表于 2025-3-22 05:03:09 | 只看該作者
5#
發(fā)表于 2025-3-22 09:13:14 | 只看該作者
Stationary Phase Method for Oscillatory Integrals over a Space of Large Dimensionm is given, which is independent of the dimension. This theorem enables us to discuss the time slicing approximation of Feynman path integrals when the dimension of the space goes to .. This was the central tool of our discussions in Sect.?5.4 of Chap.?..
6#
發(fā)表于 2025-3-22 14:19:58 | 只看該作者
Feynman’s IdeaBefore going to mathematical discussions, we rapidly explain, for convenience of readers, the notion of Feynman path integrals following Feynman without mathematical rigor. Afterward, some examples are given.
7#
發(fā)表于 2025-3-22 18:27:43 | 只看該作者
8#
發(fā)表于 2025-3-22 23:55:50 | 只看該作者
9#
發(fā)表于 2025-3-23 02:22:32 | 只看該作者
10#
發(fā)表于 2025-3-23 05:34:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无棣县| 南漳县| 措勤县| 凤山市| 紫云| 文山县| 黄浦区| 宝山区| 蓬安县| 栖霞市| 绥芬河市| 报价| 文昌市| 平和县| 普兰县| 阿克| 会东县| 教育| 河北区| 沁水县| 枣强县| 安徽省| 乐陵市| 太谷县| 高邑县| 临汾市| 视频| 东安县| 屏南县| 左贡县| 佛冈县| 宜阳县| 定远县| 正蓝旗| 香格里拉县| 二手房| 四川省| 灵璧县| 泸水县| 乌兰察布市| 天台县|