找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rigidity in Dynamics and Geometry; Contributions from t Marc Burger,Alessandra Iozzi Book 2002 Springer-Verlag Berlin Heidelberg 2002 Analy

[復(fù)制鏈接]
樓主: JADE
11#
發(fā)表于 2025-3-23 12:19:13 | 只看該作者
12#
發(fā)表于 2025-3-23 17:56:49 | 只看該作者
13#
發(fā)表于 2025-3-23 20:25:48 | 只看該作者
http://image.papertrans.cn/r/image/830388.jpg
14#
發(fā)表于 2025-3-23 22:38:27 | 只看該作者
https://doi.org/10.1007/978-3-662-04743-9Analysis; Diophantine approximation; Fractal; Number theory; Rigidity theory; dynamical systems; ergodic t
15#
發(fā)表于 2025-3-24 04:04:10 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:39 | 只看該作者
An Introduction to Cocycle Super-Rigidity,The cocycle super-rigidity theorem is a central result in the study of dynamics of semisimple Lie groups and lattices. We give an overview of the main ideas centered on this theorem and some of its most immediate applications. The emphasis will be on the topological and differentiable (as opposed to measurable) aspects of the theory.
17#
發(fā)表于 2025-3-24 13:16:50 | 只看該作者
On the Cohomology of Anosov Actions,The goal of this survey is to present recent cohomological results in the theory of Anosov actions, as well as to show how they are related to other results in the field. Due to constraints of space, the presentation is biased toward results related to our work.
18#
發(fā)表于 2025-3-24 16:08:34 | 只看該作者
19#
發(fā)表于 2025-3-24 21:40:29 | 只看該作者
20#
發(fā)表于 2025-3-25 02:43:11 | 只看該作者
Appendix: Diophantine Approximation on Hyperbolic Surfaces,irit of Sect. 2 (or [11]), and the many still open questions that arise for them. We refer to [9], [10]for fundamental results and further developments. We study in particular the distance to a cusp of closed geodesics on a hyperbolic surface.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福海县| 英德市| 平罗县| 莆田市| 会理县| 吉水县| 莱州市| 乌什县| 南投县| 泸定县| 正镶白旗| 景谷| 崇信县| 莱州市| 隆回县| 深州市| 正阳县| 甘南县| 桃源县| 通渭县| 麟游县| 兴安盟| 梨树县| 汨罗市| 平昌县| 乌什县| 八宿县| 福安市| 宁南县| 双流县| 合阳县| 广德县| 红安县| 钟山县| 新龙县| 台山市| 灵山县| 林周县| 南投县| 什邡市| 东乌珠穆沁旗|