找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rigid Geometry of Curves and Their Jacobians; Werner Lütkebohmert Book 2016 Springer International Publishing Switzerland 2016 Algebraic G

[復制鏈接]
樓主: Confer
11#
發(fā)表于 2025-3-23 13:33:55 | 只看該作者
https://doi.org/10.1007/978-3-319-27371-6Algebraic Geometry; Arithmetic Geometry; Number Theory; Several Complex Variables and Analytic Spaces; C
12#
發(fā)表于 2025-3-23 16:21:12 | 只看該作者
13#
發(fā)表于 2025-3-23 22:05:23 | 只看該作者
14#
發(fā)表于 2025-3-23 23:53:09 | 只看該作者
15#
發(fā)表于 2025-3-24 06:20:46 | 只看該作者
16#
發(fā)表于 2025-3-24 09:08:04 | 只看該作者
17#
發(fā)表于 2025-3-24 11:37:36 | 只看該作者
Formal and Rigid Geometry, introduced such spaces in Bosch (Manuscr. Math. 20:1–27, .)..In Sect.?. admissible formal .-schemes and formal blowing-ups are defined. In a canonical way the generic fiber of an admissible formal .-scheme is a formal analytic space..In Sect.?. we will discuss the important result in Theorem?. of R
18#
發(fā)表于 2025-3-24 16:38:52 | 只看該作者
Rigid Analytic Curves,rd (in Publ. Math. IHES 36:75–109, .), see also Raynaud (in Proceedings of the Conference on Fundamental Groups of Curves in Algebraic Geometry Held in Luminy, vol.?187, .; Chap.?5)..In Sect.?. the result on the periphery is used to constitute a genus formula in Proposition?. which relates the genus
19#
發(fā)表于 2025-3-24 20:15:49 | 只看該作者
Jacobian Varieties,. with semi-abelian reduction. . is a formal torus extension of a formal abelian .-scheme . with reduction ...The generic fiber . of . is the largest connected open subgroup of . which admits a smooth formal .-model; this is discussed in Sect.?. in a more general context. The relationship between th
20#
發(fā)表于 2025-3-25 00:32:59 | 只看該作者
Raynaud Extensions,cial interest are the polarizations of Jacobians .. There are two, the usual theta polarization and the canonical polarization which is related to a pairing on the homology group . of the curve .. In Sect.?. we discuss these polarizations. This is related to Riemann’s vanishing theorem Corollary?. f
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
法库县| 盈江县| 大城县| 凌源市| 富宁县| 赤壁市| 左权县| 万山特区| 遂宁市| 措勤县| 高淳县| 九寨沟县| 彩票| 阳曲县| 开封市| 元谋县| 泰兴市| 舞钢市| 江油市| 秀山| 盐城市| 宁阳县| 石屏县| 垫江县| 镇远县| 澄城县| 昭苏县| 英吉沙县| 金坛市| 安溪县| 巩义市| 军事| 深水埗区| 微山县| 土默特左旗| 保康县| 锡林郭勒盟| 中西区| 湘潭县| 丰台区| 宝兴县|