找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rigid Analytic Geometry and Its Applications; Jean Fresnel,Marius Put Textbook 2004 Springer Science+Business Media New York 2004 Area.Mer

[復(fù)制鏈接]
樓主: irritants
11#
發(fā)表于 2025-3-23 11:16:26 | 只看該作者
Affinoid Algebras,he set of maximal ideals of some finitely generated algebra over .. Rigid (analytic) spaces over a complete non-archimedean valued field . are formed in a similar way. A rigid space is obtained by glueing affinoid spaces with respect to a certain Grothendieck topology which we will call a .-topology
12#
發(fā)表于 2025-3-23 16:56:49 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:14 | 只看該作者
Abelian Varieties,n analytic torus . over a non-archimedean valued field . is introduced. The analytic structure of the analytification . of an algebraic torus . over ., with character group ., is investigated, as well as lattices Λ ? . and the structure of the analytic torus .. For analytic line bundles on ., here r
14#
發(fā)表于 2025-3-23 23:21:39 | 只看該作者
Points of Rigid Spaces, Rigid Cohomology,icular, there are abelian sheaves . on . such that the stalk . is 0 for every . ∈ .. The obvious reason is that the Grothendieck topology on . is not local enough. The first concept of a sufficient collection of points for a rigid space is presented in [198]. This concept, its generalizations and ri
15#
發(fā)表于 2025-3-24 03:23:52 | 只看該作者
Etale Cohomology of Rigid Spaces,ell known for real and complex varieties. Especially for algebraic varieties over a field of positive characteristic, this theory produces surprising analogies with the algebraic topology of real or complex varieties. One of the early successes is of course the proof of the Weil conjectures. For rig
16#
發(fā)表于 2025-3-24 07:21:26 | 只看該作者
17#
發(fā)表于 2025-3-24 11:08:36 | 只看該作者
18#
發(fā)表于 2025-3-24 18:41:24 | 只看該作者
19#
發(fā)表于 2025-3-24 19:59:08 | 只看該作者
20#
發(fā)表于 2025-3-25 00:19:31 | 只看該作者
Abelian Varieties,he uniformization of general abelian varieties over . is sketched. The results, presented in this chapter, are the work of many authors, A. Grothendieck, M. Raynaud, D. Mumford, L. Gerritzen, Y. Manin, V. Drinfeld, S. Bosch, W. Lütkebohmert et al.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 11:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳曲县| 台中市| 西青区| 闸北区| 逊克县| 襄汾县| 琼中| 韩城市| 武安市| 汉源县| 沭阳县| 万源市| 高要市| 丹江口市| 东台市| 滦南县| 甘孜| 察雅县| 周口市| 长海县| 三亚市| 新沂市| 华亭县| 长沙县| 彭山县| 运城市| 临沂市| 神木县| 克东县| 慈利县| 五大连池市| 崇礼县| 郸城县| 敦煌市| 永靖县| 海盐县| 桃江县| 怀化市| 云霄县| 黑水县| 宜君县|