找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers; Cédric Arhancet,Christoph Kriegler Book 2022 The Editor(s

[復(fù)制鏈接]
查看: 21002|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:39:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers
編輯Cédric Arhancet,Christoph Kriegler
視頻videohttp://file.papertrans.cn/831/830337/830337.mp4
概述Solves the Junge–Mei–Parcet problem concerning the H∞ calculus of Hodge–Dirac operators.Introduces in a self-contained way all materials needed in the construction of its various non-commutative objec
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers;  Cédric Arhancet,Christoph Kriegler Book 2022 The Editor(s
描述This book on recent research in noncommutative harmonic analysis treats the L.p.?boundedness of Riesz transforms associated with Markovian semigroups of either Fourier?multipliers on non-abelian groups or Schur multipliers. The detailed study of these?objects is then continued with a proof of the boundedness of the holomorphic functional calculus for Hodge–Dirac operators, thereby answering a question of Junge, Mei and Parcet, and presenting a new functional analytic approach which makes it possible to further explore the connection with noncommutative geometry. These L.p.?operations are then shown to yield new examples of quantum compact metric spaces?and spectral triples.?.?The theory described in this book has at its foundation one of the great discoveries in analysis of the twentieth century: the continuity of the Hilbert and Riesz transforms on L.p.. In the works of?Lust-Piquard (1998) and Junge, Mei and Parcet (2018), it became apparent that these L.p.?operations can be?formulated on L.p.?spaces associated with groups. Continuing these lines of research, the book provides a self-contained introduction to the requisite noncommutative background..?Covering an active and excitin
出版日期Book 2022
關(guān)鍵詞Riesz Transforms; Functional Calculus; Fourier Multipliers; Schur Multipliers; Noncommutative Lp-spaces;
版次1
doihttps://doi.org/10.1007/978-3-030-99011-4
isbn_softcover978-3-030-99010-7
isbn_ebook978-3-030-99011-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers影響因子(影響力)




書目名稱Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers影響因子(影響力)學(xué)科排名




書目名稱Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers網(wǎng)絡(luò)公開度




書目名稱Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers被引頻次




書目名稱Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers被引頻次學(xué)科排名




書目名稱Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers年度引用




書目名稱Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers年度引用學(xué)科排名




書目名稱Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers讀者反饋




書目名稱Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:45:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:22:52 | 只看該作者
Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers978-3-030-99011-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
地板
發(fā)表于 2025-3-22 07:48:27 | 只看該作者
5#
發(fā)表于 2025-3-22 12:48:03 | 只看該作者
6#
發(fā)表于 2025-3-22 16:28:49 | 只看該作者
7#
發(fā)表于 2025-3-22 17:51:36 | 只看該作者
8#
發(fā)表于 2025-3-22 23:13:42 | 只看該作者
Locally Compact Quantum Metric Spaces and Spectral Triples, the way, we introduce a Banach space variant of the notion of spectral triple suitable for our context. Finally, we investigate the bisectoriality and the functional calculus of some Hodge-Dirac operators which are crucial in the noncommutative geometries which we introduce here.
9#
發(fā)表于 2025-3-23 02:40:25 | 只看該作者
10#
發(fā)表于 2025-3-23 08:56:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉木乃县| 塘沽区| 衡南县| 临沂市| 玉溪市| 肥城市| 察哈| 马鞍山市| 丰原市| 乳源| 襄樊市| 兴宁市| 保康县| 平舆县| 长寿区| 城口县| 常山县| 舒城县| 安图县| 和政县| 思南县| 磐安县| 鲁甸县| 南阳市| 五大连池市| 淮南市| 孟村| 宝清县| 天全县| 乌兰浩特市| 临沧市| 大兴区| 休宁县| 宁明县| 克拉玛依市| 台安县| 扎鲁特旗| 巫溪县| 营山县| 仙桃市| 穆棱市|