找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannsche Fl?chen; Klaus Lamotke Textbook 2009Latest edition Springer-Verlag Berlin Heidelberg 2009 Algebraische Topologie.Analysis.Diff

[復制鏈接]
樓主: 對將來事件
11#
發(fā)表于 2025-3-23 10:34:24 | 只看該作者
12#
發(fā)表于 2025-3-23 17:32:24 | 只看該作者
Ebene Kurven,ung der analytischen Geometrie durch Descartes (1637) stellten sich die Kegelschnitte als . heraus: Sie werden durch polynomiale Glei- chungen .(.) = 0 zweiten Grades definiert. Bei analytischer Betrach- tungsweise bilden die . (Kurven dritten Grades) die n?chste Klasse. Hier treten zus?tzliche Ph?n
13#
發(fā)表于 2025-3-23 20:06:20 | 只看該作者
Harmonische Funktionen,iemanns Dissertation (1851) werden zun?chst reelle . konstruiert, die lokal Realteile holomorpher Funktionen sind. Dazu benutzte Riemann eine Methode der Potentialtheorie, die er als Dirichletsches Prinzip bezeichnete und nicht weiter begründete; siehe die historischen Bemerkungen in 10.3.4. Wir fol
14#
發(fā)表于 2025-3-24 00:59:57 | 只看該作者
Uniformisierung. Dreiecksgruppen,d daher durch ? unverzweigt überlagert, siehe 7.6.1-2. Nachdem es Klein gelungen war, für die durch .. = ..(. - 1) definierte Modulfl?che .. eine unverzweigte überlagerung E → .. zu konstruieren und diese Konstruktion auf ?hnlich definierte Fl?chen auszudehnen, vermutete er, da? alle durch Po- lynom
15#
發(fā)表于 2025-3-24 02:58:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:13:57 | 只看該作者
Der Periodentorus,grale auszudehnen. Er entdeckte an Beispielen, da? für das Geschlecht . die Abelschen Funktionen, d.h. die Umkehrfunktionen Abelscher Integrale von . komplexen Variablen abh?ngen und 2?.-fach periodisch sind, also modern ausgedrückt einen komplex .-dimensionalen Torus als Definitionsbereich haben. W
17#
發(fā)表于 2025-3-24 12:52:13 | 只看該作者
18#
發(fā)表于 2025-3-24 18:00:46 | 只看該作者
19#
發(fā)表于 2025-3-24 19:05:24 | 只看該作者
Textbook 2009Latest editionen und reellen Analysis sowie der Algebra zusammenwirken, um die reichhaltige Struktur dieser Fl?chen aufzukl?ren. Viele Beispiele und Bilder, die in der historischen Entwicklung eine Rolle spielten, erg?nzen die Darstellung. Das Buch beruht auf Vorlesungen und Seminaren im Anschlu? an eine Einführu
20#
發(fā)表于 2025-3-25 02:36:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
登封市| 荥阳市| 甘孜| 陈巴尔虎旗| 轮台县| 紫金县| 兴宁市| 新竹市| 当涂县| 赤水市| 霍山县| 腾冲县| 太谷县| 昆明市| 称多县| 安平县| 招远市| 和平县| 隆昌县| 当涂县| 寿阳县| 宁陕县| 西宁市| 阜城县| 罗城| 定西市| 德庆县| 惠东县| 义马市| 新安县| 扎鲁特旗| 五常市| 开原市| 启东市| 阿巴嘎旗| 咸宁市| 岱山县| 景谷| 五指山市| 措美县| 汝城县|