找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Optimization and Its Applications; Hiroyuki Sato Book 2021 The Author(s), under exclusive license to Springer Nature Switzerlan

[復(fù)制鏈接]
查看: 22937|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:21:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Riemannian Optimization and Its Applications
編輯Hiroyuki Sato
視頻videohttp://file.papertrans.cn/831/830322/830322.mp4
概述Details the Riemannian conjugate gradient method so that the reader can make light work of implementing the algorithm.An accessible journey from unconstrained optimization in Euclidean space to Rieman
叢書名稱SpringerBriefs in Electrical and Computer Engineering
圖書封面Titlebook: Riemannian Optimization and Its Applications;  Hiroyuki Sato Book 2021 The Author(s), under exclusive license to Springer Nature Switzerlan
描述.This?brief describes the basics of Riemannian optimization—optimization on Riemannian manifolds—introduces algorithms for Riemannian optimization problems, discusses the theoretical properties of these algorithms, and suggests possible applications of Riemannian optimization to?problems in?other fields..To provide the reader with a smooth introduction to Riemannian optimization, brief reviews of mathematical optimization in Euclidean spaces and Riemannian geometry are included. Riemannian optimization is then introduced by merging these concepts. In particular, the Euclidean and Riemannian conjugate gradient methods are discussed in detail.?A brief review of recent developments in Riemannian optimization is also provided. . ?. Riemannian optimization methods are applicable to many problems in various fields. This brief?discusses?some?important applications?including the eigenvalue and singular value decompositions in numericallinear algebra, optimal model reduction in control engineering, and canonical correlation analysis in statistics..
出版日期Book 2021
關(guān)鍵詞Riemannian Optimization; Optimization on Manifolds; Conjugate Gradient Method; Singular Value Decomposi
版次1
doihttps://doi.org/10.1007/978-3-030-62391-3
isbn_softcover978-3-030-62389-0
isbn_ebook978-3-030-62391-3Series ISSN 2191-8112 Series E-ISSN 2191-8120
issn_series 2191-8112
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Riemannian Optimization and Its Applications影響因子(影響力)




書目名稱Riemannian Optimization and Its Applications影響因子(影響力)學(xué)科排名




書目名稱Riemannian Optimization and Its Applications網(wǎng)絡(luò)公開度




書目名稱Riemannian Optimization and Its Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Riemannian Optimization and Its Applications被引頻次




書目名稱Riemannian Optimization and Its Applications被引頻次學(xué)科排名




書目名稱Riemannian Optimization and Its Applications年度引用




書目名稱Riemannian Optimization and Its Applications年度引用學(xué)科排名




書目名稱Riemannian Optimization and Its Applications讀者反饋




書目名稱Riemannian Optimization and Its Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:08:56 | 只看該作者
Conjugate Gradient Methods on Riemannian Manifolds,red to be a modified version of the Riemannian steepest descent method. In particular, we analyze the Fletcher–Reeves-type and Dai–Yuan-type Riemannian CG methods and prove their global convergence properties under some conditions.
板凳
發(fā)表于 2025-3-22 04:11:45 | 只看該作者
地板
發(fā)表于 2025-3-22 05:36:36 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:24 | 只看該作者
6#
發(fā)表于 2025-3-22 16:03:25 | 只看該作者
Recent Developments in Riemannian Optimization,In this chapter, we review the recent developments in Riemannian optimization, such as stochastic and constrained optimization. A few other topics, including second-order and nonsmooth optimization, are also briefly reviewed. Interested readers may refer to the references introduced in the subsequent sections.
7#
發(fā)表于 2025-3-22 19:25:25 | 只看該作者
Hiroyuki SatoDetails the Riemannian conjugate gradient method so that the reader can make light work of implementing the algorithm.An accessible journey from unconstrained optimization in Euclidean space to Rieman
8#
發(fā)表于 2025-3-23 00:26:14 | 只看該作者
9#
發(fā)表于 2025-3-23 05:00:20 | 只看該作者
10#
發(fā)表于 2025-3-23 07:33:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连云港市| 兰溪市| 日喀则市| 太保市| 横峰县| 天峨县| 读书| 牡丹江市| 九台市| 乌恰县| 怀集县| 上栗县| 商洛市| 德格县| 沭阳县| 获嘉县| 五常市| 天等县| 朝阳市| 丰顺县| 博湖县| 邢台市| 钦州市| 天峻县| 铜山县| 齐河县| 青龙| 玉龙| 无锡市| 长葛市| 永嘉县| 宜州市| 阳新县| 温宿县| 柏乡县| 图木舒克市| 太保市| 正宁县| 诏安县| 南宁市| 美姑县|