找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Optimization and Its Applications; Hiroyuki Sato Book 2021 The Author(s), under exclusive license to Springer Nature Switzerlan

[復(fù)制鏈接]
查看: 22937|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:21:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Riemannian Optimization and Its Applications
編輯Hiroyuki Sato
視頻videohttp://file.papertrans.cn/831/830322/830322.mp4
概述Details the Riemannian conjugate gradient method so that the reader can make light work of implementing the algorithm.An accessible journey from unconstrained optimization in Euclidean space to Rieman
叢書名稱SpringerBriefs in Electrical and Computer Engineering
圖書封面Titlebook: Riemannian Optimization and Its Applications;  Hiroyuki Sato Book 2021 The Author(s), under exclusive license to Springer Nature Switzerlan
描述.This?brief describes the basics of Riemannian optimization—optimization on Riemannian manifolds—introduces algorithms for Riemannian optimization problems, discusses the theoretical properties of these algorithms, and suggests possible applications of Riemannian optimization to?problems in?other fields..To provide the reader with a smooth introduction to Riemannian optimization, brief reviews of mathematical optimization in Euclidean spaces and Riemannian geometry are included. Riemannian optimization is then introduced by merging these concepts. In particular, the Euclidean and Riemannian conjugate gradient methods are discussed in detail.?A brief review of recent developments in Riemannian optimization is also provided. . ?. Riemannian optimization methods are applicable to many problems in various fields. This brief?discusses?some?important applications?including the eigenvalue and singular value decompositions in numericallinear algebra, optimal model reduction in control engineering, and canonical correlation analysis in statistics..
出版日期Book 2021
關(guān)鍵詞Riemannian Optimization; Optimization on Manifolds; Conjugate Gradient Method; Singular Value Decomposi
版次1
doihttps://doi.org/10.1007/978-3-030-62391-3
isbn_softcover978-3-030-62389-0
isbn_ebook978-3-030-62391-3Series ISSN 2191-8112 Series E-ISSN 2191-8120
issn_series 2191-8112
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Riemannian Optimization and Its Applications影響因子(影響力)




書目名稱Riemannian Optimization and Its Applications影響因子(影響力)學(xué)科排名




書目名稱Riemannian Optimization and Its Applications網(wǎng)絡(luò)公開度




書目名稱Riemannian Optimization and Its Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Riemannian Optimization and Its Applications被引頻次




書目名稱Riemannian Optimization and Its Applications被引頻次學(xué)科排名




書目名稱Riemannian Optimization and Its Applications年度引用




書目名稱Riemannian Optimization and Its Applications年度引用學(xué)科排名




書目名稱Riemannian Optimization and Its Applications讀者反饋




書目名稱Riemannian Optimization and Its Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:08:56 | 只看該作者
Conjugate Gradient Methods on Riemannian Manifolds,red to be a modified version of the Riemannian steepest descent method. In particular, we analyze the Fletcher–Reeves-type and Dai–Yuan-type Riemannian CG methods and prove their global convergence properties under some conditions.
板凳
發(fā)表于 2025-3-22 04:11:45 | 只看該作者
地板
發(fā)表于 2025-3-22 05:36:36 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:24 | 只看該作者
6#
發(fā)表于 2025-3-22 16:03:25 | 只看該作者
Recent Developments in Riemannian Optimization,In this chapter, we review the recent developments in Riemannian optimization, such as stochastic and constrained optimization. A few other topics, including second-order and nonsmooth optimization, are also briefly reviewed. Interested readers may refer to the references introduced in the subsequent sections.
7#
發(fā)表于 2025-3-22 19:25:25 | 只看該作者
Hiroyuki SatoDetails the Riemannian conjugate gradient method so that the reader can make light work of implementing the algorithm.An accessible journey from unconstrained optimization in Euclidean space to Rieman
8#
發(fā)表于 2025-3-23 00:26:14 | 只看該作者
9#
發(fā)表于 2025-3-23 05:00:20 | 只看該作者
10#
發(fā)表于 2025-3-23 07:33:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新民市| 尼木县| 绥棱县| 南靖县| 巴楚县| 南城县| 怀柔区| 金川县| 五大连池市| 太湖县| 龙山县| 孟津县| 木兰县| 繁峙县| 普兰县| 建德市| 香港 | 牡丹江市| 德兴市| 志丹县| 即墨市| 佛教| 桐乡市| 雅江县| 保德县| 和林格尔县| 长治县| 靖安县| 琼海市| 比如县| 灵武市| 连南| 清苑县| 晋中市| 杭锦后旗| 依安县| 敦煌市| 洛隆县| 休宁县| 关岭| 武鸣县|